a) \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
b) \(y^3-13=\left(y-\sqrt{13}\right)\left(y^2+\sqrt{13}y+13\right)\)
c) \(2x^2-4=\left(\sqrt{2}x-2\right)\left(\sqrt{2}x+2\right)\)
d) \(\left(x-1\right)^3-\left(y+1\right)^3=\left(x-1-y-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]=\left(x-y-2\right)\left(x^2-2x+1+xy-y+x-1+y^2+2y+1\right)=\left(x-y-2\right)\left(x^2+y^2-x+y+xy+1\right)\)
a. x2 - 2
<=> x2 - \(\left(\sqrt{2}\right)^2\)
<=> (x - \(\sqrt{2}\))(x + \(\sqrt{2}\))
b. y3 - 13
<=> y3 - \(\left(\sqrt[3]{13}\right)^3\)
<=> \(\left(y-\sqrt[3]{13}\right)\left[y^2+\sqrt[3]{13}y+\left(\sqrt[3]{13}\right)^2\right]\)
c. 2x2 - 4
<=> \(\left(x\sqrt{2}\right)^2\) - 22
<=> \(\left(x\sqrt{2}-2\right)\left(x\sqrt{2}+2\right)\)
d. (x - 1)3 - (y + 1)3
\(\Leftrightarrow\left[\left(x-1\right)-\left(y+1\right)\right]\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\Leftrightarrow\left(x-1-y-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
\(\Leftrightarrow\left(x-y-2\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(y+1\right)+\left(y+1\right)^2\right]\)
a: \(x^2-2=\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
b:\(2x^2-4=2\left(x^2-2\right)=2\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)\)
d: \(\left(x-1\right)^3-\left(y+1\right)^3\)
\(=\left(x-1-y-1\right)\left(x^2-2x+1+xy+x-y-1+y^2+2y+1\right)\)
\(=\left(x-y-2\right)\left(x^2+y^2-x+y+xy+1\right)\)