tìm số tự nhiên n, biết
a) 16/2n =2
b) 8n :2n =4
Tìm số tự nhiên n, biết : 8 n : 2 n = 4
Tìm số tự nhiên n biết
a)5 chia hết cho (n-1)
b) 20 chia hết cho (2n + 1)
a) 5 chia hết cho n - 1 khi n - 1 là ước của 5
Ư(5) = {-5; -1; 1; 5}
⇒n - 1 ∈ {-5; -1; 1; 5}
Do n là số tự nhiên nên
n ∈ {0; 2; 6}
b) Do n là số tự nhiên nên 2n + 1 > 0
20 chia hết cho 2n + 1
⇒2n + 1 ∈ Ư(20) = {1; 2; 4; 5; 10; 20}
⇒2n ∈ {0; 3; 5; 6; 11; 21}
Lại do n là số tự nhiên
⇒n ∈ {0; 3}
tìm tập hợp số tự nhiên n biết 8n+27/2n+3 là số tự nhiên S
8n+27 = 8n+12 +15 =4(2n+3)+15 chia hết chó 2n+3
=> 15 chia hết cho 2n+3
2n+3 thuộc ước của 15; U(15) ={1;3;5;15}
+2n+3 = 1 loại
+2n+3 =3 => n =0
+2n+3 =5 => n=1
+2n+3 =15=> n =6
Vậy n thuộc {0;1;6}
8n+27 = 8n+12 +15 =4(2n+3)+15 chia hết cho 2n+3
=> 15 chia hết cho 2n+3
2n+3 thuộc ước của 15; U(15) ={1;3;5;15}
+2n+3 = 1 loại
+2n+3 =3 => n =0
+2n+3 =5 => n=1
+2n+3 =15=> n =6
Vậy n thuộc {0;1;6}
Tìm số tự nhiên n để 2n+8n+5 là số chính phương
- Với \(n=0\) không thỏa mãn
- Với \(n=1\) không thỏa mãn
- Với \(n=2\Rightarrow2^n+8n+5=25\) là số chính phương (thỏa mãn)
- Với \(n>2\Rightarrow2^n⋮8\Rightarrow2^n+8n+5\) chia 8 dư 5
Mà 1 SCP chia 8 chỉ có các số dư là 0, 1, 4 nên \(2^n+8n+5\) ko thể là SCP
Vậy \(n=2\) là giá trị duy nhất thỏa mãn yêu cầu
Tìm số tự nhiên n biết:
a) 2n+7 chia hết cho n+2
b) 4n-5 chia hết cho 2n -1
Lời giải:
a.
$2n+7\vdots n+2$
$\Rightarrow 2(n+2)+3\vdots n+2$
$\Rightarrow 3\vdots n+2$
$\Rightarrow n+2\in\left\{1;3\right\}$ (do $n+2>0$ với $n$ là số
tự nhiên)
$\Rightarrow n\in\left\{-1;1\right\}$
Vì $n$ là số tự nhiên nên $n=1$
b.
$4n-5\vdots 2n-1$
$\Rightarrow 2(2n-1)-3\vdots 2n-1$
$\Rightarrow 3\vdots 2n-1$
$\Rightarrow 2n-1\in\left\{1;-1;3;-3\right\}$
$\Rightarrow n\in\left\{1;0; 2; -1\right\}$
Do $n$ là số tự nhiên nên $n\in\left\{1;0;2\right\}$
tìm số tự nhiên n để
a. 8n * 193 chia hết cho 4n+3
b. 15 chia hêt cho 2n+3
c. 2n+8 chia hết cho n+2
tìm số tự nhiên x,y để
a, (2x+3)*(y-5)=12
b, (4-2x)-(y+2)=18
1.Tìm ƯCLN của 2n -1 và 9n + 4 ( với n thuộc số tự nhiên).
2.Tìm ƯCLN của 7n + 3 và 8n - 1 ( với n thuộc số tự nhiên).
1) (2n-1;9n+4)=(2n-1;n+8)=(17;n+8)=1 hoặc 17
2) (7n+3;8n-1) =(7n+3;n-4)=(31;n-4)=1 hoặc 31
1. Tìm số tự nhiên n để hai số sau nguyên tố cùng nhau
a) n+2 và n+3 b)2n+1 và 9n+4
2. Tìm các số tự nhiên a, b. Biết
a) a+b= 192 và ƯCLN(a, b)= 24
b) a.b= 216 và ƯCLN(a, b)= 6
Tìm số tự nhiên n để 2n + 3 và 8n + 9 là 2 số nguyên tố cùng nhau
7A. Chứng minh rằng: Với mọi số tự nhiên n, các số sau là các số nguyên tố cùng nhau:
a) n+1; n+2
b) 2n + 2; 2n + 3
c) 2n + 1; n+1
d) n + 1; 3n +4
a: \(d=UCLN\left(n+1;n+2\right)\)
\(\Leftrightarrow n+2-n-1⋮d\)
hay d=1
b: \(d=UCLN\left(2n+2;2n+3\right)\)
\(\Leftrightarrow2n+3-2n-2⋮d\)
hay d=1