Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ARIES1405

Những câu hỏi liên quan
Nguyễn Việt Bách
Xem chi tiết
Akai Haruma
2 tháng 9 2023 lúc 10:23

A(x)=-2 rồi thì A(x):B(x) dư 6 sao được bạn? Bạn xem lại đề.

Nguyễn Thùy Chi
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
TV Cuber
2 tháng 5 2022 lúc 21:30

a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)

\(f\left(0\right)=0+0-3=-3\)

\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)

 

TV Cuber
2 tháng 5 2022 lúc 21:33

b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)

\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)

\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)

 

Nhật Minh Trần
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Sky
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 5 2021 lúc 6:50

\(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)\Rightarrow\left(x;y;z\right)\Rightarrow\left\{{}\begin{matrix}x^2+y^2+z^2=3\\0\le x;y;z\le\sqrt{3}\end{matrix}\right.\)

\(P=x^2y+y^2z+z^2x-xyz\)

Không mất tính tổng quát, giả sử \(x=mid\left\{x;y;z\right\}\)

\(\Rightarrow\left(x-y\right)\left(x-z\right)\le0\Leftrightarrow x^2+yz\le xy+xz\)

\(\Rightarrow x^2y+y^2z\le xy^2+xyz\)

\(\Rightarrow P\le xy^2+z^2x+xyz-xyz=x\left(y^2+z^2\right)=x\left(3-x^2\right)\)

\(\Rightarrow P\le2-\left(x^3-3x+2\right)=2-\left(x-1\right)^2\left(x+2\right)\le2\)

\(P_{max}=2\) khi \(\left(a;b;c\right)=\left(1;1;1\right)\) hoặc \(\left(1;0;2\right)\) và một vài hoán vị

nguyễn rose
Xem chi tiết
HT2k02
2 tháng 4 2021 lúc 13:09

Mình nghĩ đề bị sai bạn ạ, bạn xem lại giùm mình nhé

Trần Hải Việt シ)
Xem chi tiết
ERROR
2 tháng 4 2022 lúc 13:03

:))

ERROR
2 tháng 4 2022 lúc 20:46

TK

Phương pháp giải:

-        Đa thức f(x) có nghiệm là  –2 nên f(–2) = 0, từ đó ta tìm được c.

-        Đa thức g(x) có nghiệm là  x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.

-        Giải h(x) = 0 để tìm nghiệm của h(x).

Giải chi tiết:

a)     Đa thức f(x) có nghiệm là  –2 nên f(–2) = 0

⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.⇒2.(−2)2−3.(−2)+c=0⇔2.4+6+c=0⇔14+c=0⇔c=−14.

Vậy đa thức f(x) có nghiệm là  –2 thì c=−14c=−14.

b)     Đa thức g(x) có nghiệm là  x1=1; x2=2x1=1; x2=2 nên g(1) = 0; g(2) = 0

⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2⇒{12+1.a+b=022+2.a+b=0⇔{1+a+b=04+2a+b=0⇔{a+b=−12a+b=−4⇔{b=−1−a2a+(−1−a)=−4⇔{b=−1−a2a−1−a=−4⇔{b=−1−aa−1=−4⇔{b=−1−aa=−4+1⇔{a=−3b=−1−(−3)⇔{a=−3b=2

Vậy đa thức g(x) có hai nghiệm là x1=1; x2=2x1=1; x2=2 thì a=−3; b=2.a=−3; b=2.

c)     Ta có: f(x)=2x2−3x−14;  g(x)=x2−3x+2.f(x)=2x2−3x−14;  g(x)=x2−3x+2.

h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4h(x)=f(x)−g(x)=(2x2−3x−14)−(x2−3x+2)=2x2−3x−14−x2+3x−2=x2−16.h(x)=0⇒x2−16=0⇒x2=16⇒[x=4x=−4

Vậy tập nghiệm của đa thức h(x) là {4;−4}

Trần Hải Việt シ)
Xem chi tiết
ERROR
2 tháng 4 2022 lúc 20:49

TK

Phương pháp giải:

-        Đa thức f(x) có nghiệm là  –2 nên f(–2) = 0, từ đó ta tìm được c.

-        Đa thức g(x) có nghiệm là  x1=1;x2=2x1=1;x2=2 nên g(1) = 0; g(2) = 0, từ đó ta tìm được a, b.

-        Giải h(x) = 0 để tìm nghiệm của h(x).

Trần Hải Việt シ)
Xem chi tiết
Hồ Nhật Phi
2 tháng 4 2022 lúc 21:23

f(x)=0 \(\Leftrightarrow\) 2x+a2-3=0 \(\Rightarrow\) x=\(\dfrac{3-a^2}{2}\).

a) x=1 \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=1 \(\Rightarrow\) a=\(\pm\)1.

b) x=\(\dfrac{-1}{2}\) \(\Leftrightarrow\) \(\dfrac{3-a^2}{2}\)=\(\dfrac{-1}{2}\) \(\Rightarrow\) a=\(\pm\)2.