Tìm x biết
x3+3x2+3x+1-3x2-3x=0
Tìm x biết x 3 + 3 x 2 + 3 x + 1 = 0
A. x = -1
B. x = 1
C. x = -2
D. x = 0
Ta có
x 3 + 3 x 2 + 3 x + 1 = 0 ⇔ ( x + 1 ) 3 = 0
ó x + 1 = 0 ó x = -1
Vậy x = -1
Đáp án cần chọn là: A
tìm x thỏa mãn:
a) (x2+2)(x-4)-(x+2)3=-16
b) 7x3+3x2-3x+1=0
c) x3+3x2+3x+28=0
a: Ta có: \(\left(x^2+2\right)\left(x-4\right)-\left(x+2\right)^3=-16\)
\(\Leftrightarrow x^3-4x^2+2x-8-x^3-6x^2-12x-8=-16\)
\(\Leftrightarrow-10x^2-10x=0\)
\(\Leftrightarrow-10x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
c: Ta có: \(x^3+3x^2+3x+28=0\)
\(\Leftrightarrow\left(x+1\right)^3=-27\)
\(\Leftrightarrow x+1=-3\)
hay x=-4
Bài 7. Tìm x,biết:
a) x-3x2=0 e) 5x(3x-1)+x(3x-1)-2(3x-1)=0
b) (x+3)2-x(x-2)=13 c) (x-4)2-36=0
d) x2-7x+12=0 g) x2-2018x-2019=0
Bài 8. Tìm x, biết
a) (2x-1)2=(x+5)2 b) x2-x+1/4
c) 4x4-101x2+25=0 d) x3-3x2+9x-91=0
Tìm x biết : x3 + 3x2 = -3x - 1
\(x^3+3x^2=-3x-1\)
\(\Leftrightarrow x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Leftrightarrow x=-1\)
Tìm x biết:
a) x3 - 7x2 - 9x + 63 = 0
b) x3 - 3x2 + 3x - 1 + 2.(x2 - x) = 0
Cho D.ABC có M, N lần lượt là trung điểm của AB, AC biết BC = 6cm. Độ dài MN là
A.3cm
B.1cm
C.4cm
D.2cm
Hằng đẳng thức (x - 1)3 được viết đúng là
A.(x - 1)3 = x3 - 3x2 + 3x + 1
B.(x - 1)3 = x3 - 3x + 3x2 - 1
C.(x - 1)3 = x3 - 2x2 + 2x - 1
D.(x - 1)3 = x3 - 3x2 + 3x - 1
Tìm x, biết:
x3 + 3x2 + 3x =0
Mn giúp mik nhen^^
\(x^3+3x^2+3x=0\\ \Leftrightarrow x\left(x^2+3x+3\right)=0\\ \Leftrightarrow x=0\left(x^2+3x+3=x^2+3x+\dfrac{9}{4}=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0\right)\)
\(x^3+3x^2+3x=0\)
\(\Rightarrow x\left(x^2+3x+3\right)=0\)
Mà: \(x^2+3x+3>0\)
=> x = 0
\(x^3+3x^2+3x=0\)
\(\Leftrightarrow x\left(x^2+3x+3\right)=0\)
mà \(x^2+3x+3=\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\forall x\)
\(\Rightarrow x=0\)
Tìm x:
a) x3-3x2+3x-1=1000
b) x2-4x-21=0
a.
\(\Leftrightarrow\left(x-1\right)^3=10^3\)
\(\Leftrightarrow x-1=10\)
\(\Rightarrow x=11\)
b.
\(\Leftrightarrow x^2-4x+4=25\)
\(\Leftrightarrow\left(x-2\right)^2=5^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
a) x3-3x2+3x-1=1000
⇒(x-1)3=1000
⇒x-1=10
⇒x=11
b) x2-4x-21=0
⇒ x2-7x+3x-21=0
⇒x(x-7)+3(x-7)=0
⇒(x+3)(x-7)=0
⇒ hoặc x+3 = 0 ⇒ x=-3
hoặc x-7=0⇒x=7
vậy x={-3; 7}
a) Có: \(x^3-3x^2.1+3.1^2x-1^3=1000\)
\(\Rightarrow\left(x-3\right)^3=1000\)
\(\Rightarrow\left[{}\begin{matrix}x-3=10\\x-3=-10\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=13\\x=-7\end{matrix}\right.\)
b) Có: \(x^2-4x+4-25=0\)
\(\Rightarrow\left(x-2\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}x-2=5\\x-2=-5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-3\end{matrix}\right.\)
Tìm x:
a) x4-25x3=0
b) (x-5)2-(3x-2)2=0
c) x3-4x2-9x+36=0
d) (-x3+3x2-4x) : (\(-\dfrac{1}{2}\)x)=0
a.
$x^4-25x^3=0$
$\Leftrightarrow x^3(x-25)=0$
\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)
b.
$(x-5)^2-(3x-2)^2=0$
$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$
$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix}
-2x-3=0\\
4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=\frac{-3}{2}\\
x=\frac{7}{4}\end{matrix}\right.\)
c.
$x^3-4x^2-9x+36=0$
$\Leftrightarrow x^2(x-4)-9(x-4)=0$
$\Leftrightarrow (x-4)(x^2-9)=0$
$\Leftrightarrow (x-4)(x-3)(x+3)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)
d. ĐK: $x\neq 0$
$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$
$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$
$\Leftrightarrow -2(-x^2+3x-4)=0$
$\Leftrightarrow x^2-3x+4=0$
$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)
Vậy pt vô nghiệm.
tìm x
a, x3 - 3x2 + 3x - 1 = 0
b, x6 - 1 = 0
c, 4x3 - 36x = 0
d, x3 - 6x2 + 12x + 8 = 0
a) \(\Rightarrow\left(x-1\right)^3=0\Rightarrow x=1\)
b) \(\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\Rightarrow\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)(do \(\left\{{}\begin{matrix}x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\\x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\end{matrix}\right.\))
c) \(\Rightarrow4x\left(x^2-9\right)=0\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(x-2\right)^3=0\Rightarrow x=2\)
a) \(x^3-3x^2+3x-1=0\Rightarrow\left(x-1\right)^3=0\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(x^6-1=0\Rightarrow\left(x^3\right)^2-1=0\Rightarrow\left(x^3-1\right)\left(x^3+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^3-1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(4x^3-36x=0\Rightarrow4x\left(x^2-36\right)=0\Rightarrow4x\left(x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}4x=0\\x-6=0\\x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)
d) \(x^3-6x^2+12x-8=0\) (đề bài như vậy mới làm đc, nếu là +8 thì mình xin bó tay nhé)
\(\Rightarrow x^3-3\cdot x^2\cdot2+3\cdot x\cdot2^2-2^3=0\)
\(\Rightarrow\left(x-2\right)^3=0\Rightarrow x-2=0\Rightarrow x=2\)