Cho ΔABC. Lấy điểm D, E sao cho C là trung điểm của BE và AD. Chứng minh:
a) ΔABC = ΔDEC; b) AB // DE
c) Nếu ΔABC cân tại C thì ΔAEC là tam giác gì? Vì sao?
Cho ΔABC , AB=AC , phân giác AD .
a, Chứng minh : ΔABD=ΔACD
b, Vẽ trung tuyến CF , G là giao điểm CF và AD . Chứng minh G là trọng tâm ΔABC
c, Gọi H là trung điểm của CD . Đường thẳng \(\perp\)CD tại H cắt AC tại E . Chứng minh : ΔDEC cân
d, So sánh AD và BD
a) Xét ΔABD và ΔACD có
AB=AC(ΔBAC cân tại A)
\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔACD(c-g-c)
b) Ta có: ΔABD=ΔACD(cmt)
nên BD=CD(hai cạnh tương ứng)
hay D là trung điểm của BC
Xét ΔABC có
AD là đường trung tuyến ứng với cạnh BC(cmt)
CF là đường trung tuyến ứng với cạnh AB(gt)
AD cắt CF tại G(gt)
Do đó: G là trọng tâm của ΔABC(Tính chất ba đường trung tuyến của tam giác)
c) Ta có: ΔABD=ΔACD(cmt)
nên \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
mà \(\widehat{ADB}+\widehat{ADC}=180^0\)(hai góc kề bù)
nên \(\widehat{ADB}=\widehat{ADC}=\dfrac{180^0}{2}=90^0\)
Xét ΔADC có
H là trung điểm của CD(gt)
HE//AD(cùng vuông góc với BC)
Do đó: E là trung điểm của AC(Định lí 1 về đường trung bình của tam giác)
Ta có: ΔADC vuông tại D(cmt)
mà DE là đường trung tuyến ứng với cạnh huyền AC(E là trung điểm của AC)
nên \(DE=\dfrac{AC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
hay DE=EC
Xét ΔDEC có ED=EC(cmt)
nên ΔDEC cân tại E(Định nghĩa tam giác cân)
Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)
Vẽ hình sau: Cho ΔABC, góc A < 90o. Trên nửa mặt phẳng bờ là AB không chứa điểm C, vẽ tia Ax ⊥ AB và lấy trên Ax điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B, vẽ tia Ay ⊥ AC và lấy điểm E sao cho AE = AC. Chứng minh:
a) BE = CD.
b) BE ⊥ CD
c) Lấy M; N là trung điểm BE; DC. Chứng minh AM = AN.
a:\(\widehat{DAC}=\widehat{DAB}+\widehat{BAC}=90^0+\widehat{BAC}\)
\(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^0+\widehat{BAC}\)
Do đó: \(\widehat{DAC}=\widehat{BAE}\)
Xét ΔDACvà ΔBAE có
AD=AB
\(\widehat{DAC}=\widehat{BAE}\)
AC=AE
Do đó: ΔDAC=ΔBAE
=>DC=BE
b: ΔDAC=ΔBAE
=>\(\widehat{ADC}=\widehat{ABE};\widehat{ACD}=\widehat{AEB}\)
\(\widehat{CEB}+\widehat{ECD}\)
\(=\widehat{CEB}+\widehat{ECA}+\widehat{DCA}\)
\(=\widehat{ECA}+\widehat{AEB}+\widehat{CEB}\)
\(=\widehat{ECA}+\widehat{AEC}=90^0\)
=>BE\(\perp\)CD
Cho ΔABC vuông cân tại đỉnh A, M là trung điểm của BC. Trên cạnh BC lấy điểm D tuỳ ý (D khác M). Từ B,C hạ BE, CF vuông góc với AD. Chứng minh:
a) ΔAEB = ΔAFC
b) ΔAME = ΔCMF
c) ΔMEF vuông cân.
2. Cho ΔABC có AB=AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA. Chứng minh:
a) ΔABM = ΔACM
b) AD⊥ BC
c) CM là tia phân giác góc DCA
VẼ HÌNH VÀ GIẢI GIÚP MÌNH LUN AH
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
DO đó: ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
c: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
DO đó: ABDC là hình bình hành
mà AB=AC
nên ABDC là hình thoi
=>CM là tia phân giác của góc DCA
Cho ΔABC cân tại A. Qua B kẻ tia Bx// AC; qua C kẻ tia Cy// AB. Bx cắt Cy tại D. Trên tia đối của tia BA lấy điểm E sao cho BE = BA. ED cắt AC tại F. Chứng minh
a. ΔABC = ΔBDE
b. C là trung điểm của AF
c. AD, BF, CE cùng đi qua 1 điểm G. G là gì của ΔAEF
(hình bạn tự vẽ nhé)
a) ta có:tam giác ABC=tam giác DCB (g.c.g)(1)
tam giác BED=tam giác DCB(g.c.g) (2)
Từ (1),(2)→tam giác ABC=tam giác BED (dfcm)
b) Tương tự câu a, ta chứng minh được ΔABC=ΔCDF
→AC = CF suy ra F là trung điểm của AF
c)Tương tự câu b, ta chứng minh được AB=BE,ED=DF
suy ra BF,CE là đường trung tuyến của ΔAEF
suy ra G là trọng tâm
Cho ΔABC, M là trung điểm của AB. Kẻ MD⊥AB (D∈ BC). Trên tia AD lấy E sao cho AE = BC. Chứng minh ΔABC = ΔBAE
Xét \(\Delta\)ADB có DM là trung tuyến đồng thời là đường cao
=> \(\Delta\)ADB cân tại D
=> \(\widehat{BAD}=\widehat{ABD}\)hay \(\widehat{BAE}=\widehat{ABC}\)
Xét \(\Delta ABC\)và \(\Delta BAE\)có:
AB chung
\(\widehat{ABC}=\widehat{BAE}\left(cmt\right)\)
BC=AE
=> \(\Delta ABC=\Delta BAE\left(cgc\right)\)
cho ΔABC cân tại A, có \(\widehat{BAC}\) nhọn . Qua A vẽ tia phân giác của \(\widehat{BAC}\)cắt cạnh BC tại D
a) chứng minh ΔABD=ΔACD
b)Vẽ đường trung tuyến CF của ΔABC cắt cạnh AD tại G. Chứng minh G là trọng tâm của ΔABC
c) Gọi H là trung điểm của cạnh DC. Qua H vẽ đường thẳng vuông góc với cạnh DC cắt cạnh AC tại E. Chứng minh ΔDEC cân
d) chứng minh ba điểm B,G,E thẳng hàng và AD>BD
a, xét tam giác ABD và tam giác ACD có : AD chung
AB = AC do tam giác ABC cân tại A (gt)
góc BAD = góc CAD do AD là phân giác của góc BAC (gt)
=> tam giác ABD = tam giác ACD (c-g-c)
b, tam giác ABD = tam giác ACD (câu a)
=> BD = DC (đn) mà D nằm giữa B; C
=> D là trung điểm của BC (đn)
=> AD là trung tuyến
CF là trung tuyến
CF cắt AD tại G
=> G là trong tâm của tam giác ABC (đl)
c, Ta có : tam giác EDC có EH vừa là đường trung tuyến vừa là đường cao
\(\Rightarrow\)tam giác EDC cân tại E
D, Vì EH // AD \(\Rightarrow\)theo định lí Ta - lét ta có : \(\frac{DH}{HC}=\frac{AE}{EC}\)
Mà HC = HD \(\Rightarrow\)AE = EC \(\Rightarrow\)E là trung điểm AC
\(\Leftrightarrow\)BE là đường trung tuyến \(\Rightarrow\)Ba điểm B, G , E thẳng hàng
cho ΔABC có AM là đường trung tuyền ứng với BC . Trên cạnh AC lấy điểm D sao cho AD =1/2 DC . Kẻ Mx song song với BD và cắt AC tại E . Đoạn BD cắt AM tại I .Chứng minh:
a) AD = DE = EC
b) SAIB = SIMB
c) SABC = 2SIBC
Giúp mình vs ạ mình cảm mơnn
a: Xét ΔBDC có
M là trung điểm của BC
ME//BD
Do đó: E là trung điểm của DC
Suy ra: \(ED=EC=\dfrac{DC}{2}\)
mà \(AD=\dfrac{DC}{2}\)
nên AD=ED=EC