Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Soorii_eun
Xem chi tiết
Hello
11 tháng 12 2022 lúc 16:07

Bài 2: 

Ta có: 2a2+2b2=(a2+2ab+b2)+(a2-2ab+b2)

                        =(a+b)2+(a-b)2 là tổng 2 số chính phương

⇒2a2+2b2 là tổng của 2 số chính phương(đpcm)

Nguyễn Minh Nhật
Xem chi tiết
Lê Song Phương
4 tháng 6 2023 lúc 7:18

Giả sử \(y\) là số lẻ

Đặt \(\left\{{}\begin{matrix}x^2-y=m^2\\x^2+y=n^2\end{matrix}\right.\left(m,n\inℕ;m< n\right)\)

\(\Rightarrow2y=n^2-m^2\) \(\Rightarrow n^2-m^2\) chia hết cho 2 nhưng không chia hết cho 4.

 Thế nhưng, ta thấy \(n^2\) và \(m^2\) khi chia cho 4 chỉ có thể có số dư là 0 hoặc 1, vậy nên \(n^2-m^2\) khi chia cho 4 sẽ chỉ có số dư là \(0,1,-1\), nghĩa là nếu \(n^2-m^2\) mà chia hết cho 2 thì buộc hiệu này phải chia hết cho 4, mâu thuẫn. Vậy điều giả sử là sai \(\Rightarrow\) đpcm.

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2018 lúc 10:16

x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0

Dam Duyen Le
Xem chi tiết
Manh
Xem chi tiết
Trần Quốc Đạt
20 tháng 12 2016 lúc 19:20

Một bài "troll" người ta.

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\).

Em làm tương tự rồi nhân nhau là xong đó.

GV
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2022 lúc 14:34

\(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=1+x^2+y^2+x^2y^2+4xy+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x^2+y^2+2xy\right)+\left(x^2y^2+2xy+1\right)+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y\right)^2+\left(1+xy\right)^2+2\left(x+y\right)\left(1+xy\right)\)

\(=\left(x+y+1+xy\right)^2\) là SCP

Nguyễn thành Đạt
24 tháng 12 2022 lúc 14:38

(1+x2)(1+y2)+4xy+2(x+y)(1+xy)

 = 1+y2+x2+x2y2+2xy+2xy+2(x+y)(1+xy)

 =(x2+2xy+y2)+(x2y2+2xy+1)+2(x+y)(1+xy)

 =(x+y)2+(xy+1)2+2(x+y)(1+xy)

 =(x+y+xy+1)2

 

NGUYỄN Đat
Xem chi tiết
Hello
11 tháng 12 2022 lúc 16:45

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

Bong Entertainment
Xem chi tiết
Kiều Vũ Linh
Xem chi tiết

Từ giả thiết:

\(3x^2+x=4y^2+y\Leftrightarrow\left(3x-4y\right)^2=12x^2+12y^2-24xy+\left(x-y\right)\)

\(\Leftrightarrow\left(3x-4y\right)^2=12\left(x-y\right)^2+\left(x-y\right)=\left(x-y\right)\left[12\left(x-y\right)+1\right]\)

Hiển nhiên ta có \(12\left(x-y\right)+1\) và \(x-y\) nguyên tố cùng nhau

Mà tích của chúng là 1 SCP \(\Rightarrow\) cả 2 số đều phải là SCP

 

Hay \(x-y\) là SCP