cho tam giác ABC cân tại A , có AB=12cm , AC=16cm kẻ đường cao AH (H thuộc BC)
a)chứng minh tam giác HBA đồng dạng tam giác ABC
b)tính độ dài đoạn thẳng BC,AH
Cho tam giác ABC vuông tại A , có AB=12cm , AC=16cm . Kẻ đường cao AH ( H thuộc BC )
a, Chứng minh tam giác HBA đồng dạng với tam giác ABC
b,Tính độ dài các đoạn thẳng BC , AH
c, Gọi AD là đường phân giác của \(\widehat{BAC}\) ( D thuộc BC ) ; DE là đường phân giác của \(\widehat{ADB}\) ( E thuộc AB ) . Đường thẳng vuông góc với DE tại D , cắt cạnh AC ở F . Chứng minh rằng \(\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=1\)
Do E là chân đường phân giác góc D, theo định lý phân giác:
\(\dfrac{EA}{EB}=\dfrac{DA}{DB}\)
Ta có:
\(\left\{{}\begin{matrix}\widehat{BDE}+\widehat{EDF}+\widehat{FDC}=180^0\\\widehat{EDF}=90^0\left(gt\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDC}=90^0\) (1)
\(\left\{{}\begin{matrix}\widehat{FDA}+\widehat{ADE}=90^0\left(gt\right)\\\widehat{ADE}=\widehat{BDE}\left(\text{DE là phân giác góc D}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{BDE}+\widehat{FDA}=90^0\) (2)
(1);(2) \(\Rightarrow\widehat{FDA}=\widehat{FDC}\Rightarrow DF\) là phân giác góc \(\widehat{ADC}\)
\(\Rightarrow\dfrac{FC}{FA}=\dfrac{DC}{DA}\) (định lý phân giác)
\(\Rightarrow\dfrac{EA}{EB}.\dfrac{DB}{DC}.\dfrac{FC}{FA}=\dfrac{DA}{DB}.\dfrac{DB}{DC}.\dfrac{DC}{DA}=1\) (đpcm)
Câu a quá dễ rồi bạn tự làm
Áp dụng định lý Pitago:
\(BC=\sqrt{AB^2+AC^2}=20\) (cm)
Theo câu a, do 2 tam giác vuông HBA và ABC đồng dạng
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB=9cm,AC=12cm,kẻ đường cao AH (H thuộc BC).đườngbphaan giác BE (E thuộc AC) cắt AH tại F 1)chứng minh tam giác HBA đồng dạng tam giác ABC 2)tính độ dài đoạn thẳng BC,AH 3)chứng minh FH/FA=EA/EC giúp mk vs mk cảm ơn
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha
Cho tam giác ABC vuông tại A, có AB = 12 cm ; AC = 16 cm. Kẻ đường cao AH ( H thuộc BC ).
a) Chứng minh: tam giác HBA đồng dạng tam giác ABC từ đó suy ra AB. AC = AH. BC
b) Tính độ dài các đoạn thẳng BC, Ah
a, Xét ΔHBA và ΔABC có :
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{B}:chung\)
\(\Rightarrow\Delta HBA\sim\Delta ABC\left(g-g\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
\(\Rightarrow AB.AC=BC.AH\)
b, Xét ΔABC vuông A, theo định lý Pi-ta-go ta được :
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{12^2+16^2}=20\left(cm\right)\)
Ta có : \(\Delta HBA\sim\Delta ABC\left(cmt\right)\)
\(\Rightarrow\dfrac{AB}{BC}=\dfrac{AH}{AC}\)
hay \(\dfrac{12}{20}=\dfrac{AH}{16}\)
\(\Rightarrow AH=\dfrac{12.16}{20}=9,6\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A có AB = 12cm; AC = 16cm. Kẻ đường cao AH (H thuộcBC) a/ Chứng minh HAC đồng dạng ABC. b/ Tính độ dài các đoạn thẳng BC, HC. c/ Từ B vẽ đường phân giác BD . Tính độ dài các đoạn thẳng DA, DC.
a: Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
Do đó: ΔHAC\(\sim\)ΔABC
b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)
\(HC=\dfrac{AC^2}{BC}=\dfrac{16^2}{20}=12.8\left(cm\right)\)
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
xét Tam giác HBA và Tam giác ABC có
B Chung
Góc H=A(=90 độ)
=> tam giác HBA Đồng dạng với tam giác giác ABC (g.g)
=> AH/AC=AB/BC
(BC)^2=AB^2+AC^2
BC^2=400
BC=20
AH/AC=AB/BC => AH=AB.AC/BC=16x12/20=9.6
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
cho tam giác ABC vuông tại A, có AB = 12cm, AC = 16cm. kẻ đường cao AH (H thuộc BC).
a) CM: tam giác HBA đồng dạng với tam giác ABC
b) tính độ dài các đoạn thẳng BC, AH
c) trong tam giác ABC kẻ phân giác AD ( D thuộc BC). trong tam giác ADB kẻ phân giác DE (E thuộc AB); trong tam giác ADC kẻ phân giác DF (F thuộc AC). CM: EA/EB * DB/DC * FC/FA =1
Tự vẽ hình nha
a) xét tam giác HAB và tam giác ABC
góc AHB = góc ABC
góc CAB : chung
Suy ra : tam giác AHB ~ tam giác ABC ( g-g )
b) Áp dụng định lí py - ta - go vào tam giác ABC ta được :
AC2 + AB2 = BC2
162 + 122 = BC2
400 = BC2
=> BC = = 20 ( cm )
ta có tam giác HAB ~ tam giác ABC ( câu a )
=>
=> AH = ( cm )
Độ dài cạnh BH là
Áp dụng định lí py - ta - go vào tam giác HBA ta được :
AH2 + BH2 = AB2
BH2 = AB2 - AH2
BH2 = 122 - 9,62
BH2 = 51,84
=> BH = = 7,2 ( cm )
c) Vì AD là đường phân giác của tam giác ABC nên :
<=>
<=> AB.CD = AC(BC - CD)
hay 12CD = 16.20 - 16CD
<=> 12CD+ 16CD = 320
<=> 28CD = 320
<=> CD =
Độ dài cạnh BD là :
BD = BC - CD
BD = 20 - 8,57 ( cm )