Phân tích đa thức thành nhân tử x^2 - 6.x + 8
bài 1: Phân tích đa thức thành nhân tử : x^2-6x+8
bài 2: Phân tích đa thức thành nhân tử : x^8+x^7+1
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
phân tích đa thức thành nhân tử
(x+2)(x+4)(x+6)(x+8)-16
phân tích đa thức thành nhân tử
\(x-6\sqrt{x}+8\)
\(x-6\sqrt{x}+8\)
\(=x-2\sqrt{x}-4\sqrt{x}+8\)
\(=\sqrt{x}\left(\sqrt{x}-2\right)-4\left(\sqrt{x}-2\right)\)
\(=\left(\sqrt{x}-2\right)\left(\sqrt{x}-4\right)\)
Phân tích đa thức thành nhân tử -8 - Phân tích đa thức thành nhân tử -8 x mũ 3 cộng 1 ta được
\(-8x^3+1=1^3-\left(2x\right)^3=\left(1-2x\right)\left(1+2x+4x^2\right)\)
Phân tích đa thức thành nhân tử:
( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16
Ta có:
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+8x+2x+16\right)\left(x^2+6x+4x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+16\right)+8\left(x^2+10x+16\right)+16\)
\(=\left(x^2+10x+16\right)^2+2.\left(x^2+10x+16\right).4+4^2\)
\(=\left(x^2+10x+16+4\right)^2=\left(x^2+10+20\right)^2\)
k nha!!
\(\text{( x + 2 ) ( x + 4 ) ( x + 6 ) ( x + 8 ) + 16}\)
\(\text{Phân tích thành nhân tử :}\)
\(\left(x^2+10x+20\right)^2\)
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)
\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)
\(=\left(x^2+10x+16\right)\left(x^2+10+24\right)+16\)
\(=\left(x^2+10x+20-4\right)\left(x^2+10x+20+4\right)+16\)(*)
Đặt \(t=x^2+10x+20\)
(*)\(=\left(t-4\right)\left(t+4\right)+16\)
\(=t^2-16+16\)
\(=t^2\)
\(=\left(x^2+10x+20\right)^2\)
\(=\left(x^2+10x+20\right)\left(x^2+10x+20\right)\)
(x+2)*(x+4)*(x+6)+(x+8)+2008
phân tích đa thức thành nhân tử
\(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+2008\)
\(=\left[\left(x+2\right)\left(x+8\right)\right]\left[\left(x+4\right)\left(x+6\right)\right]\)
\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+2008\)
Đặt \(x^2+10x+20=t\)
Khi đó phương trình tương đương với:
\(\left(t-4\right)\left(t+4\right)+2008=t^2-16+2008=t^2+1992\)
Không hiểu phân tích ra như thế nào ?????
Phân tích đa thức thành nhân tử a) x^4+x^2+2x+6 b) x^8+3x^4+4
a: \(x^4+x^2+2x+6\)
\(=x^4-2x^3+3x^2+2x^3-4x^2+6x+2x^2-4x+6\)
\(=\left(x^2-2x+3\right)\left(x^2+2x+2\right)\)
(x+2)*(x+4)*(x+6)*(x+8)+16 phân tích đa thức thành nhân tử help e vs
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
(x+2)(x+4)(x+6)(x+8)+16
=(x+2)(x+8)(x+4)(x+6)+16
=(x2+10x+16)(x2+10x+24)+16
đặt t=x2+10x+16 ta được:
t.(t+8)+16
=t2+8t+16
=(t+4)2
thay t=x2+10x+16 ta được:
(x2+10x+16)2
=[(x+2)(x+8)]2
=(x+2)2(x+8)2
vậy (x+2)(x+4)(x+6)(x+8)+16 =(x+2)2(x+8)2
mình nghĩ bạn Triều Đăng làm sai rồi...
đoạn đầu đến chôc thay t là ok r nhưng sau đó bạn sai
đáng lí sau khi thay thì ta đc
(x^2 +10x + 20)^2 ms đúng
a, Cách 1 : \(x^2+5x+6=x^2+2x+3x+6=\left(x+2\right)\left(x+3\right)\)
Cách 2 : \(x^2+5x+6=x^2+2.\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}+6\)
\(=\left(x+\frac{5}{2}\right)^2-\frac{1}{4}=\left(x+2\right)\left(x+3\right)\)
b, Cách 1 : \(x^2-x-6=x^2+2x-3x-6=\left(x-3\right)\left(x+2\right)\)
Cách 2 : \(x^2-x-6=x^2-x+\frac{1}{4}-\frac{1}{4}-6=\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=\left(x-3\right)\left(x+2\right)\)
c, Cách 1 : \(x^2+6x+8=x^2+4x+2x+8=\left(x+2\right)\left(x+4\right)\)
Cách 2 : \(x^2+6x+8=x^2+6x+9-1=\left(x+3\right)^2-1=\left(x+2\right)\left(x+4\right)\)
d, Cách 1 : \(x^2-2x-8=x^2+2x-4x-8=\left(x-4\right)\left(x+2\right)\)
Cách 2 : \(x^2-2x-8=x^2-2x+1-9=\left(x-1\right)^2-9=\left(x-4\right)\left(x+2\right)\)