\(\sqrt{5x^2-3x-8}\)tìm x để căn bậc hai có nghĩa
Tìm x để các căn bậc hai sau có nghĩa
a) \(\sqrt{\dfrac{15+3x^2}{-6}}\) b) \(\sqrt{\dfrac{-81}{-12-x^2}}\)
c) \(\sqrt{\dfrac{31\left(x^2+21\right)}{3}}\) d) \(\sqrt{\dfrac{-12}{11+x^2}}\)
e) \(\sqrt{\dfrac{21}{-x^2-17}}\)
a: ĐKXĐ: 3x^2+15/-6>=0
=>3x^2+15<=0(vô lý)
b: ĐKXĐ: -81/-x^2-12>=0
=>-x^2-12<0
=>-x^2<12
=>x^2>-12(luôn đúng)
c: ĐKXĐ: 31(x^2+21)/3>=0
=>x^2+21>=0(luôn đúng)
d: ĐKXĐ: -12/x^2+11>=0
=>x^2+11<0(vô lý)
e: ĐKXĐ: 21/-x^2-17>=0
=>-x^2-17>0
=>x^2+17<0(vô lý)
Tìm x để các căn bậc hai sau có nghĩa
a) \(\sqrt{\dfrac{8x^2+3}{4+x^2}}\) b) \(\sqrt{-3\left(x^2+2\right)}\)
c) \(\sqrt{4\left(3x^1+1\right)}\) d) \(\sqrt{\dfrac{5}{-x^2-2}}\)
a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0
=>\(x\in R\)
b: ĐKXĐ: -3(x^2+2)>=0
=>x^2+2<=0(vô lý)
d: ĐKXĐ: -x^2-2>2
=>-x^2>2
=>x^2<-2(vô lý)
d: ĐKXĐ: 4(3x+1)>=0
=>3x+1>=0
=>x>=-1/3
\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)
Vậy căn thức trên có nghĩa với mọi x.
\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.
\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\)
Vậy không có giá trị x để căn thức có nghĩa.
\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC HAI CÓ NGHĨA
1,\(\sqrt{x^2-3x+2}\)
2,\(\sqrt{\dfrac{x-6}{x-2}}\)
3,\(\sqrt{\dfrac{2x-4}{5-x}}\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)
3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)
a.tìm điều kiện để căn thức bậc hai có nghĩa \(\dfrac{1}{\sqrt{2-x}}\)
b.tính: \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
tìm x để căn bậc 2 sau có nghĩa
\(\sqrt{4-x^2}\)
để căn bậc 2 có nghĩa thì
\(x^2\le4\\ \Rightarrow-2\le x\le2\)
\(\sqrt{4-x^2}\)
\(=\sqrt{2^2-x^2}\)
\(=\sqrt{\left(2+x\right)\left(2-x\right)}\)
để căn bậc 2 trên có nghĩa thì :
\(\left(2+x\right)\left(2-x\right)\) ≥0
⇒2-x ≥0
⇒x ≥2
\(\sqrt{4-x^2}\) được xác định khi 4 - x2 \(\ge0\)
Ta giải BPT:
<=> 22 - x2 \(\ge0\)
<=> (2 - x)(2 + x) \(\ge0\)
<=> \(\left[{}\begin{matrix}2-x\ge0\\2+x\le0\\2-x\le0\\2+x\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le-2\\x\le2\\x\ge-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2\le x\le-2\left(loại\right)\\-2\le x\le2\end{matrix}\right.\)
Vậy ĐKXĐ của x là: \(-2\le x\le2\)
Bài 1
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{1}{2-x}}\)
b. \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
* Chứng minh
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}\) < 0 với a ≥ 0, b≥0
Bài 1 :
a, ĐKXĐ : \(\dfrac{1}{2-x}\ge0\)
Mà 1 > 0
\(\Rightarrow2-x>0\)
\(\Rightarrow x< 2\)
Vậy ...
b, Ta có : \(\sqrt[3]{125}.\sqrt[3]{216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}\)
\(=5.6-\dfrac{8.1}{2}=26\)
1a) Để căn thức bậc 2 có nghĩa thì \(\dfrac{1}{2-x}\ge0\Rightarrow2-x>0\Rightarrow x< 2\)
b) \(\sqrt[3]{125}.\sqrt[3]{-216}-\sqrt[3]{512}.\sqrt[3]{\dfrac{1}{8}}=\sqrt[3]{5^3}.\sqrt[3]{\left(-6\right)^3}-\sqrt[3]{8^3}.\sqrt[3]{\left(\dfrac{1}{2}\right)^3}\)
\(=5.\left(-6\right)-8.\dfrac{1}{2}=-34\)
\(\dfrac{\sqrt{ab}-b}{b}-\sqrt{\dfrac{a}{b}}=\dfrac{\sqrt{b}\left(\sqrt{a}-\sqrt{b}\right)}{\left(\sqrt{b}\right)^2}-\dfrac{\sqrt{a}}{\sqrt{b}}=\dfrac{\sqrt{a}-\sqrt{b}}{\sqrt{b}}-\dfrac{\sqrt{a}}{\sqrt{b}}\)
\(=-\dfrac{\sqrt{b}}{\sqrt{b}}=-1< 0\)
1.
a. Tìm điều kiện để căn thức bậc hai có nghĩa \(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
* Giải phương trình
a. \(\sqrt{\left(x+1\right)^2}=3\)
b. \(3\sqrt{4x+4}-\sqrt{9x+9}-8\sqrt{\dfrac{x+1}{16}}=5\)
* Tìm điều kiện để căn thức bậc hai có nghĩa
a. \(\sqrt{3-5x}\)
b. \(\sqrt{\dfrac{5}{2x+1}}\)
a) Để căn thức bậc 2 có nghĩa \(\Rightarrow3-5x\ge0\Rightarrow x\le\dfrac{3}{5}\)
b) Để căn thức bậc 2 có nghĩa \(\Rightarrow\dfrac{5}{2x+1}\ge0\Rightarrow2x+1>0\Rightarrow x>-\dfrac{1}{2}\)
\(a,x\le\dfrac{3}{5}\)
b,\(x>-\dfrac{1}{2}\)
a, để căn thức có nghĩa thì 3-5x≥0⇔x≤\(\dfrac{3}{5}\)
b, để căn thức có nghĩa thì 2x+1>0⇔x>\(\dfrac{-1}{2}\)
a) Tìm điều kiện để căn bậc hai có nghĩa \(\sqrt{\dfrac{2x+1}{x^2+1}}\)
b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
Giúp em với ạ, em cảm ơn
a) ĐKXĐ: \(\dfrac{2x+1}{x^2+1}\ge0\Leftrightarrow2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)
b) \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}=-3+4-\sqrt[3]{-64}=1+4=5\)
a: ĐKXĐ: \(x\ge-\dfrac{1}{2}\)
b: Ta có: \(\sqrt[3]{-27}+\sqrt[3]{64}-\dfrac{\sqrt[3]{-128}}{\sqrt[3]{2}}\)
\(=-3+4-\left(-4\right)\)
=-3+4+4
=5