a: ĐKXĐ: (8x^2+3)/(x^2+4)>=0
=>\(x\in R\)
b: ĐKXĐ: -3(x^2+2)>=0
=>x^2+2<=0(vô lý)
d: ĐKXĐ: -x^2-2>2
=>-x^2>2
=>x^2<-2(vô lý)
d: ĐKXĐ: 4(3x+1)>=0
=>3x+1>=0
=>x>=-1/3
\(a,\sqrt{\dfrac{8x^2+3}{4+x^2}}\) có nghĩa \(\Leftrightarrow\dfrac{8x^2+3}{4+x^2}\ge0\Leftrightarrow4+x^2\ge0\) (luôn đúng)
Vậy căn thức trên có nghĩa với mọi x.
\(b,\sqrt{-3\left(x^2+2\right)}\) có nghĩa \(\Leftrightarrow-3\left(x^2+2\right)\ge0\Leftrightarrow x^2+2\le0\Leftrightarrow x^2\le-2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.
\(c,\sqrt{4\left(3x+1\right)}\) có nghĩa \(\Leftrightarrow3x+1\ge0\Leftrightarrow3x\ge-1\Leftrightarrow x\ge-\dfrac{1}{3}\)
Vậy không có giá trị x để căn thức có nghĩa.
\(d,\sqrt{\dfrac{5}{-x^2-2}}\) có nghĩa \(\Leftrightarrow-x^2-2>0\Leftrightarrow x^2< -2\) (vô lí)
Vậy không có giá trị x để căn thức có nghĩa.