Giả sử a,b thuộc Q,a,b>0 và a,b không là bình phương của 1 số hữu tỉ nào.
CMR: Nếu r và s là 2 số hữu tỉ sao cho t= rcăna + scănb là một số hữu tỉ thì t =0
giả sử a,b là 2 số hữu tỉ dương, ko phải là bình phương của bất kì số hữu tỉ nào.
CMR Nếu r và s là 2 số hữu tỉ sao cho t=r\(\sqrt{a}\)+s\(\sqrt{b}\) la 1 so huu ti thi t=0
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
Cho các số nguyên dương m, n không phải là số chính phương . Giả sử a, b là các số hữu tỉ sao cho \(a\sqrt{m}+b\sqrt{n}\)
là số hữu tỉ. CMR \(a\sqrt{m}+b\sqrt{n}=0\)
Cho a,b,c là các số hữu tỉ khác 0 thỏa mãn a + b + c = abc . là minh rằng biểu thức Q = (a ^ 2 + 1)(b ^ 2 + 1)(c ^ 2 + 1) là bình phương của một số hữu tỉ
Lời giải:
$a+b+c=abc$
$\Rightarrow a(a+b+c)=a^2bc$
$\Leftrightarrow a^2+ab+ac+bc=bc(a^2+1)$
$\Leftrightarrow (a+b)(a+c)=bc(a^2+1)\Leftrightarrow a^2+1=\frac{(a+b)(a+c)}{bc}$
Tương tự với $b^2+1, c^2+1$. Khi đó:
$Q=\frac{(a+b)(a+c)(b+c)(b+a)(c+a)(c+b)}{bc.ac.ab}=[\frac{(a+b)(b+c)(c+a)}{abc}]^2$ là bình phương 1 số hữu tỉ.
Ta có đpcm.
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm
d) 0 là số hữu tỉ dương
Bài 2: Cho 2 số hữu tỉ a/b và c/d với b,d>0
Chứng minh: Nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Vận dụng: Viết 2 số xen giữa 2 số hữu tỉ -1/5 và 1/5
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)
cho số hữu tỉ a/b khác 0 , với a,b thuộc Z và b khác 0. Chứng tỏ rằng: nếu a và b cùng dấu thì a/b là số hữu tỉ dương.
Xét hai trường hợp b nguyên dương và b nguyên âm.
_xét b nguyên dương. Vì a,b cùng dấu nên a nguyên dương. Ta có a/b> 0/b=0. Vậy a/b là số hữu tỉ dương.
_xét b nguyên âm
Ta có -b nguyên dương. Vì a,b cùng dấu nên a nguyên âm. Suy ra a nguyên dương. Do đó a/b= -a/-b> 0/-b = 0. Vậy a/b là số hưu tỉ dương
Trong h học nhóm,ba bạn An,Bình,Chi đã lần lượt phát biểu như sau -An: " Số 0 là số nguyên và không pk là số hữu tỉ" -Bình :" Số hữu tỉ là số viết được dưới dạng phân số a/b với a,b thuộc Z -Chi:"Mỗi số nguyên là 1 số hữu tỉ " Theo em,bạn nào phát biểu đúng,bạn nào phát biểu sai.Vì sao?
Bạn An phát biểu sai vì 0 là số hữu tỉ(vì \(0=\dfrac{0}{1}\))
Bạn Bình phát biểu sai vì phải thêm điều kiện \(b\ne0\) nữa thì \(\dfrac{a}{b}\) mới là số hữu tỉ
Bạn Chi nói đúng vì tất cả các số nguyên a đều viết được dưới dạng \(\dfrac{a}{1}\) nên chúng là số hữu tỉ
1. Số nguyên a có phải là số hữu tỉ không?
2. Biểu diễn số hữu tỉ 3/-4 trên trục số
3. So sánh số hữu tỉ a/b ( a,b thuộc Z, b không bằng 0 ) với số 0 khi a,b cùng dấu và khi a,b khác dấu
Số nguyên a là số hữu tỉ vì ta có thể viết a = \(\frac{a}{1}\)
3. Với a, b ∈ Z, b # 0
- Khi a, b cùng dấu thì a/b > 0
- Khi a, b khác dấu thì a/b < 0
Kết luận: Số hữu tỉ a/b (a, b ∈ Z, b # 0) dương nếu a, b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0.