Cho đường thẳng d : x-2y+4=0 và điểm A(4;1) . Tìm toạ độ hình chiếu vương góc của A lên d
Cho elip 3x2 + 4y2 – 48 = 0 và đường thẳng d: x - 2y + 4 = 0. Giao điểm của d và Elip là
A. (0; - 4); (-2; -3) B. (4; 0); (3; 2) C. (0; 4); (-2; 3) D. (-4; 0); (2; 3)
Có: `x-2y+4=0`
`<=>x=2y-4`
Thay `x=2y-4` vào `(E)` có:
`3(2y-4)^2+4y^2-48=0`
`<=>3(4y^2-16y+16)+4y^2-48=0`
`<=>12y^2-48y+48+4y^2-48=0`
`<=>` $\left[\begin{matrix} y=3\\ y=0\end{matrix}\right.$
`@y=3=>x=2.3-4=2`
`@y=0=>x=2.0-4=-4`
`=>` Tọa độ giao điểm của `(E)` và `(d)` là: `(2;3)` và `(-4;0)`
`->D`
\(\Rightarrow\) \(chọn\) \(D\)
\(xét\) \(hpt\) \(:\)
\(\left\{{}\begin{matrix}3x^2+4y^2-48=0\\x-2y+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\left(2y-4\right)^2+4y^2-48=0\\x=2y-4\end{matrix}\right.\)
\(giải:\) \(3\left(4y^2-16y+16\right)+4y^2-48=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}12y^2-48y+48+4y^2-48=0\\16y^2-48y=0\\\left[{}\begin{matrix}y=0\Rightarrow x=-4\\y=3\Rightarrow x=2\end{matrix}\right.\end{matrix}\right.\)
\(vậy\) \(giao\) \(điểm\) \(của\) \(elip\) \(\left(E\right)\) \(là\) \(\left(-4;0\right)\) \(và\) \(\left(2;3\right)\)
Bài 1: Trong htđ Oxy cho đường thẳng d : 3x-y+4 = 0 và đường thẳng denta : x+2y-5=0 .
Điểm A ( -2; 3).
1) Hãy tìm tọa độ điểm H là hình chiếu của A trên d.
2) tìm tọa độ A’ là điểm đối xứng với A qua d.
3) Viết phương trình đường thẳng đối xứng với đường thẳng d qua đường thẳng denta
4) Viết phuong trình đường thẳng đôi xứng với d qua A ( 3 dạng PT).
5) Tìm tọa độ điểm N trên d sao cho ON nhỏ nhất.
P/S : GIÚP MK VS Ạ. MK CẦN LẮM Ạ. GIẢI CHI TIẾT GIÚP MK VS Ạ. THANKS NHÌU NHÌU Ạ
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
4.
Gọi \(d_1\) là đường thẳng đối xứng với d qua A
\(\Rightarrow d_1||d\Rightarrow d_1\) có dạng: \(3x-y+c=0\)
Do A cách đều d và \(d_1\) nên:
\(d\left(A;d\right)=d\left(A;d_1\right)\)
\(\Leftrightarrow\dfrac{\left|3.\left(-2\right)-3+4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{\left|3.\left(-2\right)-3+c\right|}{\sqrt{3^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\left|c-9\right|=5\Rightarrow\left[{}\begin{matrix}c=4\left(loại\right)\\c=14\end{matrix}\right.\)
Vậy pt \(d_1\) có dạng: \(3x-y+14=0\)
Em tự chuyển sang 2 dạng còn lại
Trong mặt phẳng tọa độ Oxy cho điểm A(4; – 1), đường thẳng (d) : 3x – 2y + 1 = 0 và đường tròn (C) :
x^2 + y^2 - 2x + 4y -4 = 0
a. Tìm tọa độ A’ và phương trình (d’) lần lượt là ảnh của A và (d) qua phép tịnh tiến theo vectơ v = (– 2; 3)
b. Tìm phương trình đường tròn (C’) là ảnh của đường tròn (C) qua phép đối xứng trục là đường thẳng (D) : x – y = 0
Trong mặt phẳng toạ độ Oxy, cho hai điểm A(3;1),B(4;-2) và đường thẳng d: -x+2y+1=0. a) Viết phương trình tham số của Δ đi qua A song song với đường thẳng d b) Viết phương trình tổng quát của Δ đi qua B và vuông góc với đường thẳng d c) Viết phương trình đường tròn có bán kính AB
a: (Δ)//d nên Δ: -x+2y+c=0
=>VTPT là (-1;2)
=>VTCP là (2;1)
PTTS là:
x=3+2t và y=1+t
b: (d): -x+2y+1=0
=>Δ: 2x+y+c=0
Thay x=4 và y=-2 vào Δ, ta được:
c+8-2=0
=>c=-6
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)
Cho đường thẳng d : x- y + 1 = 0 và đường tròn C : x^2 + y^2 -4x +2y -4 = 0
a) Chứng minh điểm M (2;1) nằm trong đường tròn
b) Xét vị trí tương đối giữa d và
C
c) Viết phương trình đường thẳng d' vuông góc với và cắt đường tròn tại hai điểm phân biệt sao cho khoảng cách của chúng là lớn nhất.
Đường tròn (C) tâm \(I\left(2;-1\right)\) bán kính \(R=3\)
a. \(\overrightarrow{IM}=\left(0;2\right)\Rightarrow IM=\sqrt{0^2+2^2}=2< R\Rightarrow\) M nằm trong đường tròn
b. \(d\left(I;d\right)=\dfrac{\left|2-\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=2\sqrt{2}< 3\Rightarrow d\) cắt đường tròn tại 2 điểm
c. Khoảng cách giữa 2 điểm trên đường tròn là lớn nhất khi chúng nằm ở 2 mút đường kính
\(\Rightarrow\) d' đi qua tâm I
Do d' vuông góc d nên nhận (1;1) là 1 vtpt
Phương trình: \(1\left(x-2\right)+1\left(y+1\right)=0\Leftrightarrow x+y-1=0\)
1.
Trục Ox có pt \(y=0\) nên đường song song với nó là \(y=4\)
2.
\(\overrightarrow{MI}=\left(1;-2\right)\)
Đường thẳng tiếp xúc với đường tròn tâm I tại M đi qua M và vuông góc MI nên nhận \(\overrightarrow{MI}\) là 1 vtpt
Phương trình:
\(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)
Câu 26. Cho hai đường tròn (C):(x-2)^ 2 +(y-2)^ 2 =9;(C' ):x^ 2 +y^ 2 +4x-8y+11=0 ,biết (C) và (C') đối xứng nhau qua đường thẳng (a) .Phương trình của (a) là : A. 2x + 2y - 4 = 0 B.2x-y+3=0 . C. x + y - 4 = 0 . D. 2x + 2y = 0 .
Bài 6/ Cho A(1;1) ,B(4;-3) và đường thẳng d : x-2y-1=0 . Tìm điểm C thuộc đường thẳng d sao cho khoảng cách từ C đến đường thẳng AB bằng 6