Khoảng cách giữa hai đường thẳng song song d1:6x-8y-101=0 và d2:3x-4y=0 bằng
Khoảng cách giữa hai đường thẳng song song (a): 6x+ 8y+ 10= 0 và (b): 3x+ 4y = 0 là:
A. 0,5
B. 1
C. 1,5
D.2
Lấy điểm O(0;0) nằm trên đường thẳng (b). Khi đó ta có:
Chọn B
Khoảng cách giữa hai đường thẳng d 1 : 6 x - 4 y + 5 = 0 v à d 2 : 3 x - 2 y + 1 = 0 bằng bao nhiêu?
A. 6 52
B. 5 52
C. 4 52
D. 3 52
Ta có d 2 : 3 x − 2 y + 1 = 0 ⇔ 6 x − 4 y + 2 = 0
Ta có điểm A(-1; 1) thuộc đường thẳng d2,.
Vì hai đường thẳng d1 và d2 song song với nhau nên ta có:
d ( d 1 ; d 2 ) = d ( A ; d 1 ) = 6. ( − 1 ) − 4. ( − 1 ) + 5 6 2 + ( − 4 ) 2 = 3 52
ĐÁP ÁN D
Cho hai đường thẳng d 1 : 3x – 4y +2 = 0 và d 2 : mx +2y – 3 = 0. Hai đường thẳng song song với nhau khi:
A.m = 3
B.m = 3/2
C.m = -3/2
D.m = -3
Hai đường thẳng song song khi m 3 = 2 − 4 ≠ − 3 2 n ê n m = − 3 2
Chọn đáp án C.
Tính khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\)
Ta có vectơ pháp tuyến của hai đường thẳng là \(\overrightarrow {{n_1}} = \left( {3;4} \right),\overrightarrow {{n_2}} = \left( {6;8} \right)\) suy ra hai đường thẳng này song song, nên khoảng cách giữa chúng là khoảng cách từ một điểm bất kì từ đường thẳng này tới đường thẳng kia
Chọn điểm \(A\left( {0;\frac{5}{2}} \right) \in \Delta \), suy ra \(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta '} \right) = \frac{{\left| {6.0 + 8.\frac{5}{2} - 1} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{19}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng \(\Delta :3x + 4y - 10 = 0\) và \(\Delta ':6x + 8y - 1 = 0\) là \(\frac{{19}}{{10}}\)
Tính khoảng cách giữa hai đường thẳng: \(\Delta :6x + 8y - 13 = 0\) và \(\Delta ':3x + 4y - 27 = 0\).
Ta có \(\frac{6}{3} = \frac{8}{4} \ne \frac{{ - 13}}{{ - 27}}\) nên hai đường thẳng này song song với nhau.
Chọn điểm \(A(9;0) \in \Delta '\) ta có:
\(d\left( {\Delta ,\Delta '} \right) = d\left( {A,\Delta } \right) = \frac{{\left| {6.9 + 8.0 - 13} \right|}}{{\sqrt {{6^2} + {8^2}} }} = \frac{{41}}{{10}}\)
Vậy khoảng cách giữa hai đường thẳng đã cho là \(\frac{{41}}{{10}}\)
Cho ba đường thẳng d 1 : 3 x − 4 y + 1 = 0 , d 2 : x − 5 y − 3 = 0 , d 3 : − 6 x + 8 y + 1 = 0 . Số điểm M cách đều ba đường thẳng trên là
A.1
B.2
C.3
D.4
ĐÁP ÁN B
Do d1 song song với d3 nên những điểm cách đều chúng nằm trên đường thẳng ∆ song song cách đều d1;d3.
Gọi khoảng cách hai đường thẳng d1, d3 là a > 0.
Khoảng cách giữa 2 đường thẳng ∆ và d1; ∆ và d3 là a/2
Trên đường thẳng ∆ có hai điểm A, B thỏa mãn d A , d 2 = d B , d 2 = a 2
Khi đó, hai điểm A, B là hai điểm cần tìm
Số điểm M cách đề ba đường thẳng là 2.
Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)
Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:
\(\frac{\left|3x-4y+1\right|}{5}=\frac{\left|6x+8y-1\right|}{10}\Leftrightarrow\orbr{\begin{cases}2\left(3x-4y+1\right)=6x+8y-1\\2\left(3x-4y+1\right)=-6x-8y+1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}16y-3=0\\12x+1=0\end{cases}}\)
Xét hệ \(\hept{\begin{cases}3x+y-1=0\\16y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{13}{48}\\y=\frac{3}{16}\end{cases}}\Rightarrow I_1\left(\frac{13}{48};\frac{3}{16}\right)\Rightarrow R_1=\frac{17}{80}\)
\(\Rightarrow\left(C_1\right):\left(x-\frac{13}{48}\right)^2+\left(y-\frac{3}{16}\right)^2=\frac{289}{6400}\)
Xét hệ: \(\hept{\begin{cases}3x+y-1=0\\12x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{12}\\y=\frac{5}{4}\end{cases}}}\Rightarrow I_2\left(-\frac{1}{12};\frac{5}{4}\right)\Rightarrow R_2=\frac{17}{20}\)
\(\Rightarrow\left(C_2\right):\left(x+\frac{1}{12}\right)^2+\left(y-\frac{5}{4}\right)^2=\frac{289}{400}\).
Đường tròn (C) tiếp xúc với d1 và d2 , suy ra tâm của nó nằm trên đường phân giác của góc (d1;d2)
Khoảng cách từ một điểm bất kì trên phân giác của góc đến hai cạnh của góc thì bằng nhau, ta có:
|3x−4y+1|5 =|6x+8y−1|10 ⇔[
2(3x−4y+1)=6x+8y−1 |
2(3x−4y+1)=−6x−8y+1 |
⇔[
16y−3=0 |
12x+1=0 |
Xét hệ {
3x+y−1=0 |
16y−3=0 |
⇔{
x=1348 |
y=316 |
⇒I1(1348 ;316 )⇒R1=1780
⇒(C1):(x−1348 )2+(y−316 )2=2896400
Xét hệ: {
3x+y−1=0 |
12x+1=0 |
⇔{
x=−112 |
y=54 |
⇒I2(−112 ;54 )⇒R2=1720
⇒(C2):(x+112 )2+(y−54 )2=289400 .
Cho 3 đường thẳng (d1):3x-2y+5=0, (d2):2x+4y-7=0, (d3):3x+4y-1=0. Viết phương trình đường thẳng(d) di qua giao điểm của (d1),(d2) và song song với (d3)
Gọi M là giao điểm của \(d_1\) và \(d_2\Rightarrow\) toạ độ M là nghiệm của hệ:
\(\left\{{}\begin{matrix}3x-2y+5=0\\2x+4y-7=0\end{matrix}\right.\) \(\Rightarrow M\left(-\frac{3}{8};\frac{31}{16}\right)\)
Do \(d//d_3\Rightarrow d\) nhận \(\overrightarrow{n_d}=\left(3;4\right)\) là 1 vtpt
Phương trình d:
\(3\left(x+\frac{3}{8}\right)+4\left(y-\frac{31}{16}\right)=0\Leftrightarrow24x+32y-53=0\)
Cho điểm A(-2; 1) và hai đường thẳng d1: 3x - 4y + 5 = 0 và d2: mx + 3y - 3 = 0. Giá trị của m để khoảng cách từ A đến d1 gấp hai lần khoảng cách từ A đến đường thẳng d2 là:
A. m = ± 1
B. m = ± 15 3
C. m = ± 4
D. m = ± 15 5