tìm x biết
x^2-6x+9=(2x+1)^2
tìm x biết
x-3=(3-x)^2
x^3+3/2x^2+3/4x+1/8=1/64
\(\left(x-3\right)=\left(3-x\right)^2\)
\(\Leftrightarrow x-3=\left(x-3\right)^2\)
\(\Leftrightarrow\left(x-3\right)-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)\left[1-\left(x-3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
___________
\(x^3+\dfrac{3}{2}x^2+\dfrac{3}{4}x+\dfrac{1}{8}=\dfrac{1}{64}\)
\(\Leftrightarrow x^3+3\cdot\dfrac{1}{2}\cdot x^2+3\cdot\left(\dfrac{1}{2}\right)^2\cdot x+\left(\dfrac{1}{2}\right)^3=\dfrac{1}{64}\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^3=\left(\dfrac{1}{4}\right)^3\)
\(\Leftrightarrow x+\dfrac{1}{2}=\dfrac{1}{4}\)
\(\Leftrightarrow x=\dfrac{1}{4}-\dfrac{1}{2}\)
\(\Leftrightarrow x=-\dfrac{1}{4}\)
Tìm x,y biết
x/2=y/3 và 2x-3y=54
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=-\dfrac{54}{5}\)
\(\dfrac{x}{2}=-\dfrac{54}{5}\Rightarrow x=-\dfrac{54}{5}.2=-\dfrac{108}{5}\)
\(\dfrac{y}{3}=-\dfrac{54}{5}\Rightarrow y=-\dfrac{54}{5}.3=-\dfrac{162}{5}\)
Vậy \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}\)
nên \(\dfrac{2x}{4}=\dfrac{3y}{9}\)
mà 2x-3y=54
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{2x-3y}{4-9}=\dfrac{-54}{5}\)
Do đó: \(x=-\dfrac{108}{5};y=-\dfrac{162}{5}\)
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
Tìm x,y thuộc Z biết
x^2-2x+2^2y-2^y+3+17=0
: Tìm x, biết:
a) 3x( 4x- 1) - 2x(6x- 3 )=30 b) 2x(3-2x) + 2x(2x-1)=15
c) (5x-2)(4x-1) + (10x +3)(2x - 1)=1 d) (x+2) (x+2)- (x -3)(x+1) = 9
e) (4x+1)(6x-3) = 7 + (3x – 2)(8x + 9) g) (10x+2)(4x- 1)- (8x -3)(5x+2) =14
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
Câu 14: tìm x,y biết
x/2 = y/3 = z/4 và 2x + 3y - z = 27
ta có : `x/2 = y/3 = z/4=> (2x)/4 =(3y)/9 = z/4`
`=> (2x)/4 =(3y)/9 = z/4` và `2x + 3y - z = 27`
Áp dụng t/c dãy tỉ số bằng nhau ta có:
`(2x)/4 =(3y)/9 = z/4 =(2x + 3y - z)/(4+9-4)=27/9=3`
`=>x/2=3=>x=3.2=6`
`=>y/3=3=>x=3.3=9`
`=>z/4=3=>z=3.4=12`
Tìm x Toán đại 8 Hằng đẳng thức đáng nhớ?
Tìm x:
1. (x-1)^3+3.(x-3)^2-(x+2).(x^2-2x+4) = (x+2)^3-(x-3).(x^2+9)-6x^2+5
2.(3+2x)^3-(6x-1).(6x+1) = (2x-1)^3+(x+4)^2-x^3+(x+1).(x^2+x+1)
1. (x - 1)^3 + 3.(x - 3)^2 - (x + 2).(x^2 - 2x + 4) = (x + 2)^3 - (x - 3).(x^2 + 9) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3(x^2 - 6x + 9) - (x^3 + 2^3)
= x^3 + 6x^2 + 12x + 8 - (x^3 - 3x^2 + 9x -27) - 6x^2 + 5
<=> x^3 - 3x^2 + 3x - 1 + 3x^2 - 18x + 27 - x^3 - 8
= x^3 + 6x^2 + 12x + 8 - x^3 + 3x^2 - 9x + 27 - 6x^2 + 5
<=> 3x - 18x -12x - 3x^2 + 9x = 27 + 5 + 8 + 8 + 1 - 27
<=> - 3x^2 - 18x - 22 = 0
<=> 3x^2 + 18x + 22 = 0
Nửa chu vi mảnh đất là:
120 : 2 = 60 (m)
Chiều dài hơn chiều rộng là:
5 + 5 = 10 (m)
Chiều rộng là:
( 60 - 10 ) : 2 = 25 (m)
Chiều dài là:
25 + 10 = 35 (m)
Diện tích là:
25 35 = 875 ( )
Tìm x:
a. \(\sqrt{9x^2}=2x+1\)
b. \(\sqrt{x^2+6x+9}=3x-1\)
c. \(\sqrt{x^2-2x+4}=2x-3\)
\(a,\sqrt{9x^2}=2x+1\\ \Leftrightarrow\left[{}\begin{matrix}3x=2x+1,\forall x\ge0\\-3x=2x+1,\forall x< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1,\forall x\ge0\left(N\right)\\x=-1,\forall x< 0\left(N\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
\(b,\sqrt{x^2+6x+9}=3x-1\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\\ \Leftrightarrow\left[{}\begin{matrix}x+3=3x-1,\forall x+3\ge0\\x+3=1-3x,\forall x+3< 0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2,\forall x\ge-3\left(N\right)\\x=-\dfrac{1}{2},\forall x< -3\left(L\right)\end{matrix}\right.\Leftrightarrow x=2\)
\(c,\sqrt{x^2-2x+4}=2x-3\left(x\in R\right)\\ \Leftrightarrow x^2-2x+4=\left(2x-3\right)^2\\ \Leftrightarrow x^2-2x+4=4x^2-12x+9\\ \Leftrightarrow3x^2-10x+5=0\\ \Delta=100-4\cdot3\cdot5=40\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10-\sqrt{40}}{6}\\x=\dfrac{10+\sqrt{40}}{6}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5-\sqrt{10}}{3}\\x=\dfrac{5+\sqrt{10}}{3}\end{matrix}\right.\)
\(a.\sqrt{9x^2}=2x+1\)
<=> \(\sqrt{9}x=2x+1\)
<=> 3x = 2x + 1
<=> 3x - 2x = 1
<=> x = 1
Tìm x biết
x^2-3x^2+3x-1=-8
\(x^3-3x^2+3x-1=-8\)
\(\Leftrightarrow x-1=-2\)
hay x=-1
tìm x: (3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)
(3x+2)(2x+9)-(x+2)(6x+1)=(x+1)-(x-6)
6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6
18x+16=7
18x=7-16
x=-9/18=-2
vậy x =-2