Thay các chữ x,y bởi các chữ số thích hợp để A= 24x68y chia het cho 45
giải chi tiết giúp e với ạ, em tick cho.
ĐB: Thay các chữ x,y bởi các chữ số thích hợp để số:
A= 24x68y chia hết cho 45
Nếu một số vừa chia hết cho 5 vừa chia hết cho 9 thì chia hết cho 45
=> 24x68y phải chia hết cho cả 5 và 9
=> y = 0; 5
Xét y = 0 thì 24x680 chia hết cho 9
=> 2+4+x+6+8+0 chia hết cho 9
=> x = 7
Xét y = 5 thì 24x685 chia hết cho 9
=> 2+4+x+6+8+5 chia hết cho 9
=> x = 2
Vậy (x,y) = (7,0 ; 2,5)
Ta có : 45 = 5 x 9
= > 24x68y chia hết cho 5 và 9
= > y có thể = 0 và 5
Ta có : 2 + 4 + 6 + 8 + 0 = 20
27 chia hêt cho 9 nên x = 7
Ta có : 2 + 4 + 6 + 8 + 5 = 25
27 chia hết cho 9 nên x = 2
Vậy số A là : 247680 và 242685
bài 1 : dùng chín chữ số 1,2,3,...,9 ta viết tất cả các số tự nhiên có 9 chữ số , các chữ số khác nhau . Hỏi các số lập được có chia hết cho 3 , cho 9 không ? Vì sao
Bài 2 : Thay các chữ x , y bởi các chữ số thích hợp để A = 24x68y chia hết cho 45
thay các dấu * bởi các chữ số thích hợp để số *84* chia hết cho tất cả các số 2,3,5,9
Để số trên chia hết cho 2 và 5 thì số đó có tận cùng là 0
Khi đó số trên có dạng *840
Để *840 chia hết cho 3 và 9 => *840 chia hết cho 9 => * + 8 + 4 + 0 chia hết cho 9
=> * + 12 chia hết cho 9 => * = 6
Vậy số phải tìm là 6840
ta thay *84* thành a84b. (cho dễ nha.)
vì b chia hết cho 2 và 5 nên b=0
vì a840 chia hết cho 9 => a =6 (mình chỉ sử dụng chia hết cho 9 vì nêu chia hết cho 9 thì chắc chắn sẽ chia hết cho 3)
vậy *84*=6840
thay các dấu * bởi các chữ số thích hợp để số *84* chia hết cho tất cả các số 2,3,5,9
Vì *84* chia hết cho 2 và 5 nên có chữ số tận cùng là 0 =>*84*=*840
Lại có *840 chia hết cho 3 và 9 nên *+8+4+0 =*+12 chia hết cho 9
Mà 0<*<10 => *=6
Vậy số cần tìm là 6840
Để *84* chia hết cho 2 và 5 thì *(2) phải là 0
Để *84* chia hết cho 3 và 9 thì *84* phải có tổng các chữ số chia hết cho 9
=> *(1) = 6
=>*(2) = 0
Thay vào ta có : 6840
Vậy sau khi thay thì *84* sẽ là 6840
Để *84* chia hết cho 2,3,5,9 thì:
Số cuối cùng phải là 0 thì mới chia hết cho 2 và 5
Để số cần tìm chia hết cho 3 và 9 thì tổng cá chữ số phải chia hết 3 và 9 , mà 8 + 4 + 0 =12
\(\Rightarrow\)Dấu * đầu tiên phải là 18 -12 =6 ( vì 18 chia hết cho 3 và 9 )
\(\Rightarrow\)Số cần tìm là : \(6840\)
Thay các dấu * bởi các chữ số thích hợp để số *25* chia hết cho tất cả các số 2, 3, 5.
Vì *25* chia hết cho 2 và cho 5 nên chữ số hàng đơn vị là 0
Vì *25* chia hết cho 3 nên 2 + * + 5 + 0 = 7 + * ⋮ 3
Suy ra: * = {2;5;8}
Vậy các số cần tìm là 2250, 5250, 8250.
Thay các chữ bởi các chữ số thích hợp
abc + acb = bca
abc + acb = bca
Ta có :
=>abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c
thử a= 1 đến 9
Ta có : abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c
Thử từng trường hợp a từ 1 đến 9 rồi suy ra b và c (lưu ý là b và c từ 0 đến 9)
abc + acb = bca
Ta có :
=>abc + acb =bca
=>c+b=a
=>b+c+1=c
Nên a+1=c
=>abc + acb = bca.
=>a00+bc +a00+cd = bca
=>2.a00+ bc+cb=b00 + c0 +a
=>a.100.2+b.10+c+c.10+b =b.100+c.10+a
=>a.200+11.(b+c)=b.100+c.10+a
=>a.200+11.1a=b.100+c.10+a
=>a.200+11.10+11.a=b.10.10+c.10+a
=>a.211+110=10.(b0+c)+a
=>a.21.10+11.10=10(b.10+c)
=>10.(a.21+11)=10(b.10+c)
=>a.21+11=b.10+c
=>a.21+11=b.10+c
Thử trường hợp a = 1;2;3;4;5;6;7;8;9 nha rooif sẽ suy ra b và c
bài 1:tìm x,y để số 1996 xy chia hết cho cả 2 và 5 và 9
bài 2:thay x,y bằng các chữ số thích hợp để được số 38 xy chia hết cho cả 2 và 5 và 4
Bài 1: y=0; x=2
Bài 2: y=0; \(x\in\left\{0;2;4;6;8\right\}\)
Bài 1:
Để số 1996xy chia hết cho 2 và 5 thì y=0
Để số 1996xy chia hết cho 9 thì: 1+9+9+6+x+0=25+x phải là 1 số chia hết cho 9
Vậy x=2
Bài 2:
Để số 38xy chia hết cho cả 2 và 5 thì y=0
Để số 38xy chia hết cho 4 thì; 3+8+x+0=11+x phải là số chia hết cho 4
Vậy x=1 hoặc 5
Thay chữ số a,b,c bằng các chữ số thích hợp để:
ab+bc+ca=abc
ab + bc + ca = abc
10a + b + 10b + c + 10c + a = 100a + 10b + c
11a + 11b + 11c = 100a + 10b + c
b + 10c = 89a
=> Vì b + 10c không thể là một số có 3 chữ số nên a = 1
b + 10c = 89 . 1
=> c = 8, vì nếu c = 7 thì b + 10 . 7 < 89
b + 10 . 8 = 89
b + 80 = 89
=> b = 89 - 80
=> b = 9
Thay các chữ số a, b, c thì ta được:
19 + 98 + 81 = 198 (thỏa mãn)
Vậy các chữ số a,b, c lần lượt là 1 ; 9 ; 8
Thay x bởi các chữ số thích hợp.
a.\(113+x\)chia hết cho 7
b.\(\overline{20x20x20x}\)chia hết cho 7