Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ánh tuyết nguyễn
Xem chi tiết
2611
6 tháng 1 2023 lúc 22:37

`a)lim[5n^3-3n^2+1]/[1-3n^3]`

`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`

`=5/[-3]=-5/3`

_____________________________
`b)lim[-9n+5]/[3n-3]`

`=lim[-9+5/n]/[3-3/n]`

`=[-9]/3=-3`

Nguyễn Dương Ngọc Minh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hải
9 tháng 4 2017 lúc 20:17

a) lim = lim = = 2.

b) lim = lim = .

c) lim = lim = 5.

d) lim = lim == .


 

Dũng Phạm
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 4 2023 lúc 22:28

Gọi \(d=ƯC\left(3n+1;9n+6\right)\) với \(d\ge1\)

Do \(\left\{{}\begin{matrix}3n+1⋮̸3\\9n+6⋮̸3\end{matrix}\right.\) ;\(\forall n\in N\Rightarrow d\ne3\)

Ta có:

\(\left\{{}\begin{matrix}3n+1⋮d\\9n+6⋮d\end{matrix}\right.\) \(\Rightarrow9n+6-3\left(3n+1\right)⋮d\)

\(\Rightarrow3⋮d\Rightarrow\left[{}\begin{matrix}d=3\\d=1\end{matrix}\right.\)

Mà \(d\ne3\Rightarrow d=1\)

\(\Rightarrow\dfrac{3n+1}{9n+6}\) tối giản với mọi \(n\in N\)

Nguyễn Quỳnh Anh
Xem chi tiết
Nguyễn thành Đạt
29 tháng 1 2023 lúc 15:51

\(\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}\)

Long Nguyễn
Xem chi tiết
Nguyễn Thị Mai Linh
Xem chi tiết
Nguyễn Thị Mai Linh
3 tháng 8 2017 lúc 20:30

biểu thứ trên là A nha mấy bạn

Chuột yêu Gạo
Xem chi tiết
Minh Hiếu
12 tháng 2 2022 lúc 20:12

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

Nguyễn Việt Lâm
12 tháng 2 2022 lúc 20:33

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 8:25

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)