\(\dfrac{121m+9n}{-10m-3n}\) với \(\dfrac{m}{3}\)=\(\dfrac{n}{5}\)
Tính các giới hạn sau:
a) \(\lim\limits\dfrac{5n^3-3n^2+1}{1-3n^3}\)
b) \(\lim\limits\dfrac{-9n+5}{3n-3}\)
`a)lim[5n^3-3n^2+1]/[1-3n^3]`
`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`
`=5/[-3]=-5/3`
_____________________________
`b)lim[-9n+5]/[3n-3]`
`=lim[-9+5/n]/[3-3/n]`
`=[-9]/3=-3`
Tìm n ϵ Z sao cho n là số nguyên
\(\dfrac{2n-1}{n-1};\dfrac{3n+5}{n+1};\dfrac{4n-2}{n+3};\dfrac{6n-4}{3n+4};\dfrac{n+3}{2n-1};\dfrac{6n-4}{3n-2};\dfrac{2n+3}{3n-1};\dfrac{4n+3}{3n+2}\)
Tìm các giới hạn sau :
a) \(\lim\limits\dfrac{6n-1}{3n+2}\)
b) \(\lim\limits\dfrac{3n^2+n-5}{2n^2+1}\)
c) \(\lim\limits\dfrac{3^n+5.4^n}{4^n+2^n}\)
d) \(\lim\limits\dfrac{\sqrt{9n^2-n+1}}{4n-2}\)
a) lim = lim = = 2.
b) lim = lim = .
c) lim = lim = 5.
d) lim = lim == .
b, Chứng minh rằng \(\dfrac{3n+1}{9n+6}\) là phân số tối giản với mọi n ϵ ¥
Gọi \(d=ƯC\left(3n+1;9n+6\right)\) với \(d\ge1\)
Do \(\left\{{}\begin{matrix}3n+1⋮̸3\\9n+6⋮̸3\end{matrix}\right.\) ;\(\forall n\in N\Rightarrow d\ne3\)
Ta có:
\(\left\{{}\begin{matrix}3n+1⋮d\\9n+6⋮d\end{matrix}\right.\) \(\Rightarrow9n+6-3\left(3n+1\right)⋮d\)
\(\Rightarrow3⋮d\Rightarrow\left[{}\begin{matrix}d=3\\d=1\end{matrix}\right.\)
Mà \(d\ne3\Rightarrow d=1\)
\(\Rightarrow\dfrac{3n+1}{9n+6}\) tối giản với mọi \(n\in N\)
\(\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)
\(\dfrac{2n+1+3n-5-4n+5}{n-3}=\dfrac{n+1}{n-3}\)
cho mọi số nguyên dương n>2 cmr \(\dfrac{1}{3}\)\(\dfrac{ }{ }\). \(\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}........\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
cho :
\(\dfrac{\dfrac{2}{3}n+\dfrac{1}{5}\cdot\dfrac{3}{7}+\dfrac{1}{7}\cdot\dfrac{3}{10}+\dfrac{1}{3}n-\dfrac{1}{14}+\dfrac{33}{35}}{\dfrac{2}{3}\cdot\left(3n+\dfrac{3}{5}\right)\dfrac{14}{15}+\dfrac{1}{3}}\)
a, Hãy rút gọn A.
b,Tìm giá trị của A khi n =\(\dfrac{-1}{5}\)
c,Tìm n để A nhận giá trị là \(\dfrac{2}{5}\)
d,Tìm n để 2A thuộc Z
Tìm các giới hạn sau:
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(b,lim\dfrac{-3n^3+1}{2n+5}\)
\(c,lim\dfrac{n^3-2n+1}{-3n-4}\)
\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)
\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)
\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)
\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)
1) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}\)
2) tính \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}\)
1:
\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)
\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)
2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)
\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)