Chứng minh rằng phương trình sau có duy nhất một nghiệm thực
\(4x^5+20188x+2019=0\)
Chứng minh rằng phương trình \(4x^5+2018x+2019=0\) có duy nhất một nghiệm thực.
Được phép sử dụng kiến thức 12 để giải ko bạn? Lớp 10 thì chắc là chịu, tối thiểu cũng phải lớp 11 mới chứng minh được pt này có nghiệm :D
a) Chứng minh rằng \(\forall\) x, phương trình sau vô nghiệm
\(\left|x-1\right|+\left|2-x\right|=-4x^2+12x-10\)
b)Cho phương trình: \(m^2+m^2x=4m+21-3mx\) (x là ẩn)
Tìm m để phương trình trên có nghiệm dương duy nhất.
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
Chứng minh rằng phương trình x 3 + x - 1 = 0 có nghiệm duy nhất x 0 thỏa mãn 0 < x 0 < 1 2
- Xét hàm số f ( x ) = x 3 + x - 1 , ta có f(0) = -1 và f(1) = 1 nên: f(0).f(1) < 0.
- Mặt khác: f ( x ) = x 3 + x - 1 là hàm đa thức nên liên tục trên [0;1].
- Suy ra f ( x ) = x 3 + x - 1 đồng biến trên R nên phương trình x 3 + x - 1 = 0 có nghiệm duy nhất x 0 ∈ ( 0 ; 1 ) .
- Theo bất đẳng thức Côsi:
cho a,b là các số thực khác 0. Biết rằng phương trình a(x-a)^2 + b(x-b)^2 = 0 có nghiệm duy nhất.
Chứng minh: \(|a|=|b|\)
a(x-a)2 + b(x-b)2 = 0
<=> (a + b)x2 - (2a2 + 2b2)x + a3 + b3 = 0
Xét a + b = 0
<=> a = - b thì phương trình trở thành
0 = 0 (đúng)
Xét a \(\ne\)- b
Để có nghiệm duy nhất thì
∆ = (a2 + b2)2 - (a + b)(a3 + b3) = 0
<=> ab(a - b)2 = 0
<=> a = b
Vậy |a| = |b|
Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Đặt y = 3(cos x – 1) + 2sinx + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y(π) = 0 và y' = -3sin x + 2cos x + 6 > 0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x = π
Vậy phương trình đã cho có một nghiệm duy nhất.
Chứng minh các phương trình sau có nghiệm duy nhất
3(cosx − 1) + 2sinx + 6x = 0
Đặt y = 3(cos x – 1) + 2sinx + 6
Hàm số xác định, liên tục và có đạo hàm tại mọi x ∈ R
Ta có: y( π ) = 0 và y' = -3sin x + 2cos x + 6 > 0, x ∈ R.
Hàm số đồng biến trên R và có một nghiệm x = π
Vậy phương trình đã cho có một nghiệm duy nhất.
Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:
\(x^2-4x+y-6\sqrt{y}+13=0\)
Đề bài sai
Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là:
\(x^2-4x+y-6\sqrt{y}+13=0\)
ĐKXĐ: ...
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
Vậy có duy nhất cặp số (x;y)=(2;9) thỏa mãn phương trình
ĐK: \(y\ge0\)
\(x^2-4x+y-6\sqrt{y}+13=0\)
\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)
\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(2;9\right)\) là nghiệm duy nhất của phương trình
Cho phương trình 4 x - 2 x + m + 1 + 3 m + 1 = 0 ( 1 ) Biết rằng m là tham số thực sao cho 9m là số nguyên thỏa mãn 9 m < 10 Có tất cả bao nhiêu giá trị m để phương trình (1) có nghiệm duy nhất
A. 9
B. 10
C. 19
D. 20
Biết rằng phương trình log 2 2 x - 1 + m = 1 + log 3 m + 4 x - 4 x 2 - 1 có nghiệm thực duy nhất. Mệnh đề nào dưới đây đúng