Bài 4: Công thức nghiệm của phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Hoàng Nguyễn

Chứng minh rằng tồn tại một cặp số duy nhất (x, y) thỏa mãn phương trình:

\(x^2-4x+y-6\sqrt{y}+13=0\)

Nguyễn Việt Lâm
1 tháng 4 2021 lúc 17:12

Đề bài sai

Chỉ tồn tại duy nhất cặp x;y thỏa mãn pt khi đề bài là: 

\(x^2-4x+y-6\sqrt{y}+13=0\)

Nguyễn Việt Lâm
1 tháng 4 2021 lúc 17:20

ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\\sqrt{y}-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

Vậy có duy nhất cặp  số (x;y)=(2;9) thỏa mãn phương trình

Hồng Phúc
1 tháng 4 2021 lúc 17:22

ĐK: \(y\ge0\)

\(x^2-4x+y-6\sqrt{y}+13=0\)

\(\Leftrightarrow\left(x^2-4x+4\right)+\left(y-6\sqrt{y}+9\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(\sqrt{y}-3\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=9\end{matrix}\right.\)

\(\Rightarrow\left(x;y\right)=\left(2;9\right)\) là nghiệm duy nhất của phương trình


Các câu hỏi tương tự
Linh Bùi
Xem chi tiết
Hana Kim
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
Xem chi tiết
Minh Hoàng Nguyễn
Xem chi tiết
Kì Thư
Xem chi tiết
Kim Baek Yeol
Xem chi tiết
Phan Đại Hoàng
Xem chi tiết
Triết Phan
Xem chi tiết
Khanh Quynh
Xem chi tiết