cho x,y,z >0 Cm x^3/y^3+y^3/z^3+z^3/x^3>= x^2/y^2+y^2/z^2+z^2/x^2
Cho x, Y, z khác 0 thỏa mãn (x-y-z) ^2=x^2+y^2+z^2 Cm 1/x^3 -1/y^3 -1/z^3=3/xyz
cho Q= \(\sqrt{x^2-xy+y^2}\)+ \(\sqrt{y^2-yz+z^2}\)+\(\sqrt{z^2-zx+x^2}\) với x,y,z > 0 x+y+z=3
CM : Q ≥ 3
\(x^2-xy+y^2=\dfrac{1}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)
\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\sqrt{\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{1}{2}\left(x+y\right)\)
Tương tự: \(\sqrt{y^2-yz+z^2}\ge\dfrac{1}{2}\left(y+z\right)\); \(\sqrt{z^2-zx+x^2}\ge\dfrac{1}{2}\left(z+x\right)\)
Cộng vế:
\(Q\ge\dfrac{1}{2}\left(x+y\right)+\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{2}\left(z+x\right)=x+y+z=3\) (đpcm)
cho x,y,z >0 va x+y+z=3 Cm \(\frac{^{x^2}}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)
cho \(^{y^2}\)=x.z,\(z^2\)=y.t.Với x,y,z,t khác 0,y+z khác 0, \(y^3\)+\(z^3\) khác \(t^3\).Chứng minh \(x^3\)+\(y^3\)-2\(z^3\)/\(y^3\)+\(z^3\)-2\(t^3\)=(\(\dfrac{\text{x+y-2z}}{x+z-2t}\))
cm trong 3 so x,y,z ton tai 1 so bang tong 2 so con lai biet
x.(y-z)^2+y.(x-z)^2+z.(x-y)^2-x^3-y^3-z^3+4xyz=0
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`
`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`
Ad bđt cosi-swart:
`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`
Mà `xy+yz+zx<=x^2+y^2+z^2)`
`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`
Dấu "=" xảy ra khi `x=y=z=1`
`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`
`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`
`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`
Áp dụng BĐT cosi-swart ta có:
`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`
Mà`xy+yz+zx<=x^2+y^2+z^2`
`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`
Dấu "=" xảy ra khi `x=y=z=1.`
Cho x,y,z >0 / x^2 +y^2 +z^3 =3.,
Tìm max P= x/ (x^2 +2y+3) + y/(y^2 +2z+3) +z/(z^2 + 2x +3)
cho x,y,z khác 0 và x+y+z=0
chứng minh rằng
\(\frac{x^2+y^2}{x+y}+\frac{y^2+z^2}{y+z}+\frac{x^2+z^2}{x+z}=\frac{x^3}{yz}+\frac{y^3}{xz}+\frac{z^3}{xy}\)
cho x+y+z=0 . cm :x3+x2z+y2z-xyz+y3=0
A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D