Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Nguyenthi
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 12 2021 lúc 15:13

\(x^2-xy+y^2=\dfrac{1}{4}\left(x+y\right)^2+\dfrac{3}{4}\left(x-y\right)^2\ge\dfrac{1}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2-xy+y^2}\ge\sqrt{\dfrac{1}{4}\left(x+y\right)^2}=\dfrac{1}{2}\left(x+y\right)\)

Tương tự: \(\sqrt{y^2-yz+z^2}\ge\dfrac{1}{2}\left(y+z\right)\)\(\sqrt{z^2-zx+x^2}\ge\dfrac{1}{2}\left(z+x\right)\)

Cộng vế:

\(Q\ge\dfrac{1}{2}\left(x+y\right)+\dfrac{1}{2}\left(y+z\right)+\dfrac{1}{2}\left(z+x\right)=x+y+z=3\) (đpcm)

thu trang nguyen
Xem chi tiết
Nam Lê
Xem chi tiết
thanh
Xem chi tiết
Minz Ank
Xem chi tiết
Yeutoanhoc
2 tháng 3 2023 lúc 21:08

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`

Bùi Đức Anh
Xem chi tiết
Nguyen Tuan Dung
Xem chi tiết
Trương Tuấn Nghĩa
1 tháng 11 2017 lúc 17:26

A = \(\left(x^3+y^3\right)+\left(x^2z+y^2z-xyz\right)=\left(x+y\right)\left(x^2-xy+y^2\right)+z\left(x^2-xy+y^2\right)=\left(x^2-xy+y^2\right)\left(x+y+z\right)=\left(x^2-xy+y^2\right).0=0\)Kuroba Kaito = Kaito Kid :D