Tìm x,y biết:
x/2 = y/5 và x×y=90
Tìm 2 số x và y,biết:x:2=y:(-5) và x-y=-7
tìm hai số x,y biết:x/5 =y/3 và x-y=-2
Ta có : `x/5=y/3` và `x-y=-2`
ADTC dãy tỉ số bằng nhau ta có :
`x/5 = y/3 =(x-y)/(5-3)=(-2)/2=-1`
`=>x/5=-1=>x=-1.5=-5`
`=>y/3=-1=>y=-1.3=-3`
Vậy `x=-5;y=-3`
Áp dụng tính chất của DTSBN, ta được:
x/5=y/3=(x-y)/(5-3)=-2/2=-1
=>x=-5; y=-3
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x-y}{5-3}=\dfrac{-2}{2}=-1\)
Suy ra \(\dfrac{x}{5}=-1=>x=-1.5=>x=-5\)
\(\dfrac{y}{3}=-1=>y=-1.3=-3\)
Vậy x=-5; y=-3
Tìm x,y biết:x/5=y/4 và x^2-y^2=1
dat \(\frac{x}{5}=\frac{y}{4}=k\)-> x=5k va y=4.k
thay x=5k va y=4k vao x2-y2=1 ta duoc
(5k)2-(4k)2=1
25k2-16k2=1
9k2=1
k2=\(\frac{1}{9}=\left(\frac{1}{3}\right)^2\)
-> k=1/3 hay k=-1/3
voi K=1/3--> x=5.1/3=5/3 va y=4.1/3=4/3
voi K=-1/3->x=5.-1/3=-5/3 va y=4.-1/3=-4/3
Tìm x;y;z biết:
x/2=y/3=z/5 và x + y - z = 10
2 + 3 - 5 = 0 (ở dưới mẫu) thì vô lí nên đề sai
Sửa đề: x+y+z=10
Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
mà x+y+z=10
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{10}{10}=1\)
Do đó: x=2; y=3; z=5
Tìm x,y biết:
x:3=y:5 và y-x=24
\(x:3=y:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
=> \(\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
\(x:3=y:5 \Leftrightarrow \dfrac{x}{3}=\dfrac{y}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12 \\ \Rightarrow x=12.3=36 \\ y=12.5=60\)
Vậy...
Ta có: x:3=y:5
nên \(\dfrac{x}{3}=\dfrac{y}{5}\)
mà y-x=24
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{y-x}{5-3}=\dfrac{24}{2}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{x}{3}=12\\\dfrac{y}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=36\\y=60\end{matrix}\right.\)
Vậy: (x,y)=(36;60)
\(Tìm x biết:x/5=y/4 và x^2-y^2=4(x,y>0)\)
Vì x, y > 0
Đặt \(\frac{x}{5}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=5k\\y=4k\end{cases}}\)( k > 0 )
x2 - y2 = 4
<=> ( 5k )2 - ( 4k )2 = 4
<=> 25k2 - 16k2 = 4
<=> 9k2 = 4
<=> k2 = 4/9
<=> k = 2/3 ( vì k > 0 )
=> \(\hept{\begin{cases}x=5\cdot\frac{2}{3}=\frac{10}{3}\\y=4\cdot\frac{2}{3}=\frac{8}{3}\end{cases}}\)
heeweghjk/k uubunnnnnnnnnnbhtytcvbyu74xui b bbbbfk44xxxxxxxxxxxxxxxxxxxx56yh6 6rrrrr6r iiiii6irixmx rj 6 5556666666crlxxx8 rr6xxxxxxxxxxxxxxtr4444 tyjrttttttttttttttttr5xyyu
Ta có x/5=y/5=k
=>x=5k;y=4k
Theo tính chất dãy tỉ số = nhau ta có
x/5=y/4=x^2-y^2/5^2-4^2=4/9
x/5=4/9=>x=4/9.5=20/9
y/4=4/9=>y=4/9.4=16/9
=>x=20/9;y=16/9
Tìm x,y,z biết:x(x+Y+Z)=-5;y(x+Y+z)=9 và z(x+y+z)=5
Ta có: x(x+y+z)=(-5) (1)
y(x+y+z)=9 (2)
z(x+y+z)=5 (3)
\(\Rightarrow\) x(x+y+z) + y(x+y+z)+z(x+y+z)=-5+9+5
\(\Leftrightarrow\left(x+y+z\right)\left(x+y+z\right)=9\)
\(\Leftrightarrow\left(x+y+z\right)^2=9=3^2=\left(-3\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x+y+z=3\left(4\right)\\x+y+z=-3\left(5\right)\end{matrix}\right.\)
+ Với x+y+z=3 thì:
Từ (1) và (4) \(\Rightarrow\) x=\(\frac{-5}{3}\)
Từ (2) và (4) \(\Rightarrow\) y=3
Từ (3) và (4) \(\Rightarrow z=\frac{5}{3}\)
+ Với x+y+z=-3
Từ (1) và (5) \(\Rightarrow x=\frac{5}{3}\)
Từ (2) và (5) \(\Rightarrow y=-3\)
Từ (3) và (5) \(\Rightarrow z=\frac{5}{-3}\)
Vậy: \(\left(x;y;z\right)\in\left\{\left(\frac{-5}{3};3;\frac{5}{3}\right);\left(\frac{5}{3};-3;\frac{5}{-3}\right)\right\}\)
Tìm x, y biết:
x/y = 2/5 ; x . y = 40
\(\dfrac{x}{y}=\dfrac{2}{5}=\dfrac{x}{2}=\dfrac{y}{5}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=k2\\y=k5\end{matrix}\right.\)
mà \(xy=40\)
\(\Rightarrow2k.5k=40\)
\(\Rightarrow k^2=4\)
\(\Rightarrow k=\pm4\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{y}{5}=4\\\dfrac{x}{2}=\dfrac{y}{5}=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=8;y=20\\x=-8;y=-20\end{matrix}\right.\)
Tìm x, y, z biết:
x : y : z = 3 : (-2) : (-5) và 2z - 3y = 44
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{3}=\dfrac{y}{-2}=\dfrac{z}{-5}=\dfrac{2z-3y}{2.-2-3.-5}=\dfrac{44}{11}=4\)
\(\dfrac{x}{3}=4\Rightarrow x=12\\ \dfrac{y}{-2}=4\Rightarrow y=-8\\ \dfrac{z}{-5}=4\Rightarrow z=-20\)
tìm x,y biết:
x/-5=y/4=2
x/3=2/y;x,y ∈ Z
a, Xét \(\dfrac{x}{-5}=2\Rightarrow x=-10\)
\(\dfrac{y}{4}=2\Leftrightarrow y=8\)
b, \(xy=6\Rightarrow x;y\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
y | 6 | -6 | 3 | -3 | 2 | -2 | 1 | -1 |