Chứng minh phân số sau tối giản
4n+3/5n+4 (n thuộc N*)
Chứng minh M=5n+4/4n+3 (n thuộc Z) là phân số tối giản
Gọi \(\text{Ư}c\left(5n+4;4n+3\right)=d\)
\(=>\left\{{}\begin{matrix}5n+4⋮d\\4n+3⋮d\end{matrix}\right.=>\left\{{}\begin{matrix}20n+16⋮d\\20n+15⋮d\end{matrix}\right.\)
\(=>\left(20n+16\right)-\left(20n+15\right)⋮d\)
\(=>1⋮d\)
\(=>d\in\left\{-1;1\right\}\)
\(=>M\) là phân số tối giản
Chứng minh M=5n+4/4n+3 (n thuộc Z) là phân số tối giản
Gọi d=ƯCLN(5n+4;4n+3)
=>20n+16-20n-15 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Chứng minh rằng phân số: 4n+3/5n+4 tối giản với mọi n thuộc N*
\(\frac{4n+3}{5n+4}\)
Ta có d là ƯCLN(4n+3;5n+4)
=>4n+3:d
5n+4:d
=>20n+15:d
20n+16:d
=>1:d
=>\(\frac{4n+3}{5n+4}\)là phân số tối giản
(chú ý sau dấu => có hoăc móc nhé)
Chứng minh phân số: 4n+3/5n+4 tối giản với mọi n thuộc tập hợp N*
Gọi ƯCLN của 4n+3 và 5n+4 là d ( d là thuộc N )
=> 4n+3 chia hết cho d và 5n+4 chia hết cho d
=>5.(4n+3) chia hết cho d và 4.(5n+4) chia hết cho d
=> 20n+15 chia hết cho d và 20n+16 chia hết cho d
=> (20n+16)-(20n+15) chia hết cho d
=>20n+16-20n-15 chia hết cho d
=> (20n-20n)+(16-15) chia hết cho d
=> 1 chia hết cho d
=> d=1
Vậy 4n+3/5n+4 là phân số tối giản với mọi n thuôc tập hợp N*
Ai chưa từng có người yêu thì kết bạn và tk cho mik nha !!! >.<
Mọi người tk mình đi mình đang bị âm nè!!!!!!
Ai tk mình mình tk lại nha !!!
Chứng minh phân số
\(\frac{4n+3}{5n+4}\) tối giản với mọi n thuộc N*
Chứng tỏ phân số 4n+3/5n+4 với n thuộc N là phân số tối giản
Vì 4n+3 phần 5n+4 là phân số tối giản
Gọi ưcln(4n+3;5n+4) là d
Chứng minh phân số sau tối giản với mọi số tự nhiên n
A= 4n+3/5n+4
Giải:
Gọi ƯCLN(4n+3;5n+4)=d
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}5.\left(4n+3\right)⋮d\\4.\left(5n+4\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
⇒(20n+16)-(20n+15) ⋮ d
⇒ 1 ⋮ d
⇒d=1
Vậy \(\dfrac{4n+3}{5n+4}\) là phân số tổi giản.
Chúc bạn học tốt!
Chứng minh các phân số sau tối giản:
\(\dfrac{n+7}{n+8},\dfrac{4n+7
}{n+2},\dfrac{5n+12}{3n+7}\)
a, Gọi d là UCLN (n+7; n+8) (d ∈ Z)
Ta có n+7 ⋮ d ; n+8 ⋮ d ➞ (n+7) - (n+8) ⋮ d ⇒ -1 ⋮ d
⇒ d ∈ Ư (-1) = (+-1)
⇒ \(\dfrac{\left(n+7\right)}{n+8}\) là phân số tối giản
từ đo bạn tự làm được không?
câu b nhân mẫu lên 4 thành 4n + 8, ta có \(\dfrac{\left(4n+7\right)}{4n+8}\) rồi bạn trừ tử cho mẫu sẽ được -1
dạng này bạn chỉ cần cố gắng nhân mẫu hoặc tử hoặc cả hai để khi trừ tử cho mẫu thì được kết quả là 1 hoặc -1 là đc
Giải:
\(\dfrac{n+7}{n+8}\)
Gọi \(ƯCLN\left(n+7;n+8\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}n+7⋮d\\n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(n+8\right)-\left(n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{n+7}{n+8}\) là p/s tối giản
\(\dfrac{4n+7}{n+2}\)
Gọi \(ƯCLN\left(4n+7;n+2\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\n+2⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4.\left(n+2\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}4n+7⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow\left(4n+8\right)-\left(4n+7\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{4n+7}{n+2}\) là p/s tối giản
\(\dfrac{5n+12}{3n+7}\)
Gọi \(ƯCLN\left(5n+12;3n+7\right)=d\)
\(\Rightarrow\left[{}\begin{matrix}5n+12⋮d\\3n+7⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}3.\left(5n+12\right)⋮d\\5.\left(3n+7\right)⋮d\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}15n+36⋮d\\15n+35⋮d\end{matrix}\right.\)
\(\Rightarrow\left(15n+36\right)-\left(15n+35\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(\dfrac{5n+12}{3n+7}\) là p/s tối giản
Chúc bạn học tốt!
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!