\(\left(3x-2\right)\left(x^2+1\right)=3x-2\)
Giải ptrình
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
Giải ptrình
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne-1\\x\ne2\end{matrix}\right.\)
\(\dfrac{2}{x+1}-\dfrac{1}{x-2}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\\ \Leftrightarrow\dfrac{2\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-2\right)}-\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x-4-x-1-3x+11}{\left(x+1\right)\left(x-2\right)}=0\\ \Rightarrow-2x+6=0\\ \Leftrightarrow x=3\left(tm\right)\)
\(ĐK:x\ne-1;2\)
\(\Rightarrow\dfrac{2\left(x-2\right)-\left(x+1\right)}{\left(x+1\right)\left(x-2\right)}=\dfrac{3x-11}{\left(x+1\right)\left(x-2\right)}\)
\(\Leftrightarrow2\left(x-2\right)-\left(x+1\right)=3x-11\)
\(\Leftrightarrow2x-4-x-1-3x+11=0\)
\(\Leftrightarrow-2x+6=0\)
\(\Leftrightarrow2x=6\)
\(\Leftrightarrow x=3\)
\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
Giải ptrình
\(9x^2-1=\left(3x+1\right)\left(4x+1\right)\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\)
\(\Leftrightarrow3x+1=0\) hay \(-x-2=0\)
\(\Leftrightarrow x=\dfrac{-1}{3}\) hay \(x=-2\)
-Vậy \(S=\left\{\dfrac{-1}{3};-2\right\}\)
\(\left(3x+1\right)\left(3x-1\right)-\left(3x+1\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(3x-1-4x-1\right)=0\Leftrightarrow\left(3x+1\right)\left(-x-2\right)=0\Leftrightarrow x=-\dfrac{1}{3};x=-2\)
\(x^4-3x^2=5\left(3-x^2\right)\)
Giải ptrình
\(x^4-3x^2=5\left(3-x^2\right)\)
=>\(x^2\left(x^2-3\right)-5\left(3-x^2\right)=0\)
=>\(x^2\left(x^2-3\right)+5\left(x^2-3\right)=0\)
=>\(\left(x^2-3\right)\left(x^2+5\right)=0\)
=>\(x^2-3=0\)
=>\(x^2=3\)
=>\(x=\pm\sqrt{3}\)
giải phương trình
a.\(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
b.\(x\left(2x-9\right)=3x\left(x-5\right)\)
c.\(3x-15=2x\left(x-5\right)\)
d.\(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
e.\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
a) Ta có: \(\left(2x-3\right)^2=\left(2x-3\right)\left(x+1\right)\)
\(\Leftrightarrow\left(2x-3\right)^2-\left(2x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(2x-3-x-1\right)=0\)
\(\Leftrightarrow\left(2x-3\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\x=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};4\right\}\)
b) Ta có: \(x\left(2x-9\right)=3x\left(x-5\right)\)
\(\Leftrightarrow x\left(2x-9\right)-3x\left(x-5\right)=0\)
\(\Leftrightarrow x\left(2x-9\right)-x\left(3x-15\right)=0\)
\(\Leftrightarrow x\left(2x-9-3x+15\right)=0\)
\(\Leftrightarrow x\left(6-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\6-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Vậy: S={0;6}
c) Ta có: \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(3-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{5;\dfrac{3}{2}\right\}\)
d) Ta có: \(\dfrac{5-x}{2}=\dfrac{3x-4}{6}\)
\(\Leftrightarrow6\left(5-x\right)=2\left(3x-4\right)\)
\(\Leftrightarrow30-6x=6x-8\)
\(\Leftrightarrow30-6x-6x+8=0\)
\(\Leftrightarrow-12x+38=0\)
\(\Leftrightarrow-12x=-38\)
\(\Leftrightarrow x=\dfrac{19}{6}\)
Vậy: \(S=\left\{\dfrac{19}{6}\right\}\)
e) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow6x+4-3x-1=12x+10\)
\(\Leftrightarrow3x+3-12x-10=0\)
\(\Leftrightarrow-9x-7=0\)
\(\Leftrightarrow-9x=7\)
\(\Leftrightarrow x=-\dfrac{7}{9}\)
Vậy: \(S=\left\{-\dfrac{7}{9}\right\}\)
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
giải các phương trình sau :
a. (x-3)(x-4)-2.(3x-2)=\(\left(4-x\right)^2\)
b. \(\left(x+2\right)\left(x-2\right)+5x^2=\left(3x+1\right)-3x^2\)
c. \(\left(x+2\right)^3-\left(x-1\right)^3=\left(3x+1\right).\left(3x-1\right)\)
d.\(\frac{3-x}{2018}+\frac{x-1}{2020}=\frac{-x}{2021}+1\)
a) Ta có: \(\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)=\left(4-x\right)^2\)
\(\Leftrightarrow\left(x-3\right)\left(x-4\right)-2\left(3x-2\right)-\left(x-4\right)^2=0\)
\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)-\left(x-4\right)\right]-2\left(3x-2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-3-x+4\right)-6x+4=0\)
\(\Leftrightarrow x-4-6x+4=0\)
\(\Leftrightarrow-5x=0\)
mà -5<0
nên x=0
Vậy: x=0
B1 ( kết quả thôi ko cần lời giải)
a) \(\left(4x-3\right)\left(3x+2\right)-\left(6x+1\right)\left(2x-5\right)+1\)
b) \(\left(3x+4\right)^2+\left(4x-1\right)^2+\left(2+5x\right)\left(2-5x\right)\)
c) \(\left(2x+1\right)\left(4x^2-2x+1\right)+\left(2-3x\right)\left(4+6x+9x^2\right)-9\)
B2 tìm x(kết quả)
a) \(3x\left(x-4\right)-x\left(5+3x\right)=-34\)
b) \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
c) \(x^3+3x^2+3x+28=0\)
Bài 1:
a)(4x-3)(3x+2)-(6x+1)(2x-5)+1
=12x2-x-6-12x2+28x+5+1
=27x
b)(3x+4)2+(4x-1)2+(2+5x)(2-5x)
=9x2+24x+16+16x2-8x+1+4-25x2
=16x+21
c)(2x+1)(4x2-2x+1)+(2-3x)(4+6x+9x2)-9
=8x3+1+8-27x3-9
=-19x3
Bài 2:
a)3x(x-4)-x(5+3x)=-34
=>3x2-12x-3x2-5x=-34
=>-17x=-34
=>x=2
Vậy x=2
b)(3x+1)2+(5x-2)2=34(x+2)(x-2)
=>9x2+6x+1+25x2-20x+4=34(x2-4)
=>34x2-14x+5-34x2+136=0
=>-14x+141=0
=>-14x=-141
=>x=\(\frac{141}{14}\)
Vậy x=\(\frac{141}{14}\)
c)x3+3x2+3x+28=0
=>x3-x2+7x+4x2-4x+28=0
=>x(x2-x+7)+4(x2-x+7)=0
=>(x+4)(x2-x+7)=0
\(\Rightarrow\left[\begin{array}{nghiempt}x+4=0\\x^2-x+7=0\left(2\right)\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=-4\\\left(2\right)\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{27}{4}>0\end{array}\right.\)
=>(2) vô nghiệm
Vậy x=-4
bn đòi kq lm sao mk đc tick đây trời thôi t giải hết nhé
\(\left(x^2-3x+1\right)\left(x^2-3x+2\right)=2\)
Giải hộ em ạ
=>(x^2-3x)^2+3(x^2-3x)+2=2
=>(x^2-3x)(x^2-3x+3)=0
=>x^2-3x=0
=>x=0 hoặc x=3
Giải Phương trình
\(3x\left(3x^2-6x-1\right)-x\left(9x^2-9x-2\right)-\left(3x+1\right)^2=33\)
Help me
Cần gấp trong hôm nay