=>(x^2-3x)^2+3(x^2-3x)+2=2
=>(x^2-3x)(x^2-3x+3)=0
=>x^2-3x=0
=>x=0 hoặc x=3
=>(x^2-3x)^2+3(x^2-3x)+2=2
=>(x^2-3x)(x^2-3x+3)=0
=>x^2-3x=0
=>x=0 hoặc x=3
Giải hộ vs \(\hept{\begin{cases}x^2\left(y+1\right)\left(y+x+1\right)=3x^2-4x-1\\x\left(y+1\right)+1=x^2\end{cases}}\)
Giải hộ
\(^{\left(x^2-5\right)\left(x^2+3x+4\right)=0}\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình, x>0
\(\frac{\left(x^3+3x^2\sqrt{x^3-3x+6}\right)\left(3x-x^3-2\right)}{2+\sqrt{x^3-3x+6}}=4\left[2\sqrt{\left(x^3-3x+6\right)^3}-\left(x^3-3x+6\right)^2\right]\)
Giải phương trình sau: \(\left(x+1\right)\left(\sqrt{x^2+3}+\sqrt{3x^2+1}\right)=2\sqrt{\left(x^2+3\right)\left(3x^2+1\right)}\)
giải phương trình bằng phương pháp đặt ẩn phụ:
ạ) \(2\sqrt{\left(-2x^2+5x+7\right)}=x^3-3x^2-x+12\)
b) \(x^2-3x+3=\left(4+3x-\frac{4}{x}\right)\sqrt{\left(x-1\right)}\)
Giải phương trình \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)=\dfrac{-3x^2}{4}\)
Giải phương trình sau:
\(\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=1\)
\(\sqrt{2x^2+3x+1}-\sqrt{2x^2-2}=x+1\)
Mọi người giúp em với ạ
Giải phương trình sau : \(\dfrac{x^2+3x+2}{x-3}\left(x+1\right)=\dfrac{x^2+3x+2}{x-3}\left(x^2-2x-7\right)\)