Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Q.Như

Những câu hỏi liên quan
Hoàng Lê Đan Thy
Xem chi tiết
Đại Tiểu Thư
1 tháng 4 2022 lúc 19:36

130

Kurosaki
1 tháng 4 2022 lúc 19:37

=130

★彡✿ทợท彡★
1 tháng 4 2022 lúc 19:37

200 - 120 + 50 = 80 + 50 = 130

Hoàng Lê Đan Thy
Xem chi tiết
Vũ Quang Huy
23 tháng 3 2022 lúc 17:39

1300

ka nekk
23 tháng 3 2022 lúc 17:39

1300

laala solami
23 tháng 3 2022 lúc 17:40

1300

Binh Xuyen
Xem chi tiết
๖ۣۜHả๖ۣۜI
28 tháng 2 2022 lúc 22:29

Câu 2 :

a. \(n_C=\dfrac{3.6}{12}=0,3\left(mol\right)\)

\(n_{O_2}=\dfrac{4.48}{22,4}=0,2\left(mol\right)\)

Ta thấy : 0,3 > 0,2 => C dư , O2 đủ

PTHH : C + O2 -> CO2

            0,2   0,2     0,2

b. \(m_{CO_2}=0,2.44=8,8\left(g\right)\)

c.\(m_{O_2\left(dư\right)}\left(0,3-0,2\right).32=3,2\left(g\right)\)

Nguyễn Như Mai
Xem chi tiết
#Blue Sky
6 tháng 2 2023 lúc 16:47

\(\dfrac{19\times2\times5}{19\times3\times5}=\dfrac{2}{3}\)

TSUGIKUNI YORIICHI
6 tháng 2 2023 lúc 17:08

đúng òi

 

Hoa Minh Ngọc
Xem chi tiết
Hoàng Hải Minh
Xem chi tiết
Đặng Ngân Hà
15 tháng 4 2022 lúc 21:52

 

Đỗ Tuấn Phong
15 tháng 4 2022 lúc 21:55

loading...

Đỗ Tuấn Phong
15 tháng 4 2022 lúc 21:55

k nha

thắng nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 4 2023 lúc 22:28

a: AOBE là hình chữ nhật

=>AE//BO và AE=BO

=>AE//OD và AE=OD

=>ADOE là hình bình hành

b: AEBO là hình chữ nhật

=>G là trung điểm của AB và OE

AEOD là hình bình hành

=>I là trung điểm chung của AO và ED

Xét ΔADB có AG/AB=AM/AD

nên GM//DB

Xét ΔABO có AG/AB=AI/AO

nên GI//BO

=>GI//BD

=>G,I,M thẳng hàng

Phạm Minh
Xem chi tiết
Keiko Hashitou
19 tháng 3 2022 lúc 14:48

lx

Keiko Hashitou
19 tháng 3 2022 lúc 14:50

undefined

Keiko Hashitou
19 tháng 3 2022 lúc 14:50

bn mà spam là mk báo cáo đấy

Lê Phương Mai
Xem chi tiết
Vô danh
13 tháng 3 2022 lúc 9:22

a, Áp dụng định lý Pi-ta-go vào tam giác vuông ABC ta có:

\(AB^2+AC^2=BC^2\\ \Rightarrow AC=12\left(cm\right)\)

Áp dụng định lý phân giác ta có:
\(\dfrac{CD}{AD}=\dfrac{BC}{AB}=\dfrac{20}{16}=\dfrac{5}{4}\Rightarrow\dfrac{CD}{5}=\dfrac{AD}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{CD}{5}=\dfrac{AD}{4}=\dfrac{CD+AD}{5+4}=\dfrac{AC}{9}=\dfrac{12}{9}=\dfrac{4}{3}\)

\(\dfrac{CD}{5}=\dfrac{4}{3}\Rightarrow CD=\dfrac{20}{3}\\ \dfrac{AD}{4}=\dfrac{4}{3}\Rightarrow AD=\dfrac{16}{3}\)

b,Xét ΔABD và ΔHCD có:
\(\widehat{DAB}=\widehat{CHD}\left(=90^o\right)\)

\(\widehat{CDH}=\widehat{ADB}\) (2 góc đối đỉnh)

\(\Rightarrow\Delta ABD\sim\Delta HCD\left(g.g\right)\)

c,Áp dụng định lý Pi-ta-go vào tam giác vuông ABD ta có:

\(AB^2+AD^2=BD^2\\ \Rightarrow BD=\dfrac{16\sqrt{10}}{3}\left(cm\right)\)

\(\dfrac{BD}{CD}=\dfrac{16\sqrt{10}}{3}:\dfrac{20}{3}=\dfrac{4\sqrt{10}}{5}\)

\(\Delta ABD\sim\Delta HCD\left(cmb\right)\)

\(\Rightarrow\dfrac{AD}{HD}=\dfrac{AB}{HC}=\dfrac{BD}{CD}=\dfrac{4\sqrt{10}}{5}\\ \Rightarrow\dfrac{\dfrac{16}{3}}{HD}=\dfrac{16}{HC}=\dfrac{4\sqrt{10}}{5}\\ \Rightarrow\left\{{}\begin{matrix}DH=\dfrac{2\sqrt{10}}{3}\left(cm\right)\\HC=2\sqrt{10}\left(cm\right)\end{matrix}\right.\)

\(S_{HDC}=\dfrac{DH.HC}{2}=\dfrac{20}{3}\left(cm^2\right)\)