Tìm SNT x biết : 2x+2x+1+2x+2+...+2x+2015=22019-8
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
c/
$25^{36}=(5^2)^{36}=5^{72}$
$36^{25}=(6^2)^{25}=6^{50}=(6^5)^{10}< (5^7)^{10}=5^{70}< 5^{72}$
$\Rightarrow 25^{36}> 36^{25}$
2x+2x+1+2x+2+...+2x+2015=22019- 8
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Bài 5:
a)Tìm số tự nhiên x , biết : 2x + 2x+1 + 2x+2 + 2x+3 +…+ 2x+2015 = 22019 – 8
b)Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p + 1 là hợp số
Bài 5:
a)Tìm số tự nhiên x , biết : 2x + 2x+1 + 2x+2 + 2x+3 +…+ 2x+2015 = 22019 – 8
b)Cho p và 8p - 1 là các số nguyên tố . Chứng minh rằng 8p – 1 là hợp số
tìm x biết (2x +1)+(2x +2)+...+(2x + 2015).x=
x = { 0; 1; 2; 3; .......; n } ( n ∈ N )
tìm x biết (2x+1)+(2x+2)............(2x+2015) hoi x =
tìm x biết :(2x+1)+(2x+2)+...+(2x+2015)
( 2x+1)+ (2x+2) +...+ ( 2x+2015)
=2x+1+ 2x+2+...+ 2x+2015
=2015.2x +( 1+2+3+...+2015 )
= 4130x + (2015+1). 2015 : 2
=4130x + 2031120
suy ra: 4130x = -2031120
x = -491,7966...
tìm x biết (2x+1)+(2x+2)+.....+(2x+2015)=0
(2x+1)+(2x+2)+...+(2x+2015)=0
2x+1+2x+2+..+2x+2015=0
(2x+2x+...+2x)+(1+2+...+2015)=0
2015.2x+2031120=0
4030x=-2031120
x=-504
gọi số số hạng là m . Ta có :
(2x+2015+2x+1).m :2 =0
suy ra (2x +2015+2x+1).m=0
mà m khác 0 nên:
2x+2015+2x+1=0
4x + 2016 =0
tự giải tiếp nha