CHO a/b =c/d (b,d khác 0 )
CHỨNG MINH
(a+2c )(b+d)=(a+c)(b+2d)
Cho a/b = c/d (a; b; c; d khác 0) chứng minh rằng
3a^2+2b^2/2a^2-b^2 = 3c^2+2d^2/2c^2-d^2
1)Cho a/a+b=c/c+d Chứng minh rằng: a/b= c/d 2)cho a/b=c/d, chứng minh rằng a)3a+2c/3b+2d=-5a+3c/-5b+3d b)a^2/b^2=2c^2-ac/2d^2-b-d NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
Cho \(\frac{a}{b} = \frac{c}{d}\) với b – d \( \ne \) 0; b + 2d \( \ne \) 0. Chứng tỏ rằng:
\(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b} = \frac{c}{d} = \frac{{a - c}}{{b - d}}\); \(\frac{a}{b} = \frac{c}{d} = \frac{{a + 2c}}{{b + 2d}}\)
Như vậy, \(\frac{{a - c}}{{b - d}} = \frac{{a + 2c}}{{b + 2d}}\) (đpcm)
Cho a/b=c/d. Hãy chứng minh:
a) a/b= c/d= 3a+2c/ 3b+ 2d
b) (a+2c).(b+d)=(a+c).(b+2d)
c) (a-b/c-d)^4=a^4+b^4/c^4+d^4
a/b=c/d=k
=> a=bk, c=dk
thế vào các biểu thức đó rồi sử dụng phân phối
\(a)\)
Ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow3a3b=\frac{2c}{2d}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{3a}{3b}=\frac{2c}{2d}=\frac{3a+2c}{3b+2d}\)
\(\Leftrightarrow\frac{3a}{3b}=\frac{3a+2c}{3b+2d}\)hay \(\frac{a}{b}=\frac{3a+2c}{3b+2d}\)
Cho a/b < c/d (b,d > 0)
chứng minh rằng : a/b < 5a+2c/5b+2d < c/d
Ta sẽ lần lượt chứng minh:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)và \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Ta có: \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
\(\Leftrightarrow\)a(5b+2d)<b(5a+2c)
\(\Leftrightarrow\)5ab+2ad<5ab+2bc
\(\Leftrightarrow\)2ad<2bc\(\Leftrightarrow\)ad<bc\(\Leftrightarrow\)\(\frac{a}{b}\)<\(\frac{c}{d}\)(đúng theo giả thiết)
Do vậy:\(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)
Với lập luận tương tự ta cũng chứng minh được \(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Vậy \(\frac{a}{b}\)<\(\frac{5a+2c}{5b+2d}\)<\(\frac{c}{d}\)
Cho các số \(a,b,c,d\) nguyên dương đôi một khác nhau và thỏa mãn: \(\dfrac{2a+b}{a+b}+\dfrac{2b+c}{b+c}+\dfrac{2c+d}{c+d}+\dfrac{2d+a}{d+a}=6\). Chứng minh \(A=abcd\) là số chính phương.
Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)
hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)
\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)
\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))
\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)
\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)
\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)
\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)
\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)
\(\Leftrightarrow ac=bd\) (do \(b\ne d\))
Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)
Chứng minh rằng nếu a/b=c/d (Với b,d ¹ 0) ta suy ra : a/b=a+2c/b+2d.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{a}{b}=\dfrac{bk}{b}=k\)
\(\dfrac{a+2c}{b+2d}=\dfrac{bk+2dk}{b+2d}=k\)
Do đó: a/b=a+2c/b+2d
Đặt \(\dfrac{a}{b}=k;\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{a}{b}=\dfrac{bk+2dk}{b+2d}=k\)
vậy ta có đpcm
1)Cho a/a+b=c/c+d
Chứng minh rằng: a/b= c/d
2)cho a/b=c/d, chứng minh rằng
a)3a+2c/3b+2d=-5a+3c/-5b+3d
b)a^2/b^2=2c^2-ac/2d^2-b-d
NHANH NHA! MÌNH ĐANG CẦN GẤP!!!
1) Ta có:
\(\dfrac{a}{a+b}\)=\(\dfrac{c}{c+d}\)
=>a.(c+d) = c.(a+b)
a.c+a.d = a.c+b.d
Do đó a.d=b.d
=>\(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)( đpcm)
Câu 2:
Đặt a/b=c/d=k
=>a=bk; c=dk
a: \(\dfrac{3a+2c}{3b+2d}=\dfrac{3bk+2dk}{3b+2d}=k\)
\(\dfrac{-5a+3c}{-5b+3d}=\dfrac{-5bk+3dk}{-5b+3d}=k\)
=>\(\dfrac{3a+2c}{3b+2d}=\dfrac{-5a+3c}{-5b+3d}\)
b: \(\dfrac{a^2}{b^2}=\dfrac{b^2k^2}{b^2}=k^2\)
\(\dfrac{2c^2-ac}{2d^2-bd}=\dfrac{c\left(2c-a\right)}{d\left(2d-b\right)}=\dfrac{dk}{d}\cdot\dfrac{2dk-bk}{2d-b}=k^2\)
=>\(\dfrac{a^2}{b^2}=\dfrac{2c^2-ac}{2d^2-bd}\)
Cho a/b = c/d ( b; d >0 ) chứng minh rằng
a) a/a + b = c/c + d
b) a - b/b = c - d/d
c) 2a + b/a - 2b = 2c + d/c - 2d
d) ac/cd = ( a - b )^2/( a - d )^2
\(a,\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
có : \(\frac{a}{a+b}=\frac{bk}{bk+b}=\frac{bk}{b\left(k+1\right)}=\frac{k}{k+1}\)
\(\frac{c}{c+d}=\frac{dk}{dk+d}=\frac{dk}{d\left(k+1\right)}=\frac{k}{k+1}\)
\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)
cứ đặt dạng tổng quát rồi làm tương tự