1/(x+1).(x+2)+.......+1/(x+9).(x+10)=9/10
giải phương trình:
a/x-1/x^2-x+1 - x+/x^2+x+1 = 10/x(x^4+x^2+1)
b/ x+9/10 + x+10/9 = 9/x+10 + 10/x+9
c/ x^2-2x+2/x-1 + x^2-8x+20 = x^2-4x+6/x-2 + x^2-6x +12/x-3
giải phương trình
a. x-1/x^2 -x +1 - x+1/x^2 +x +1 = 10 / x(x^4 +x^2 +1)
b. x+9/10 + x+10/9 = 9/x+10 + 10/x+9
c. x-5/x-5 + x-6/x-5 + x-7/x-5 +...+1/x-5 =4 (x thuộc N)
d. 1/x^2 +3x+2 + 1/x^2 +5x+6 + 1/x^2 +7x+12 +...+ 1/x^2 +15x+56=1/14
a: \(\dfrac{x-1}{x^2-x+1}-\dfrac{x+1}{x^2+x+1}=\dfrac{10}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow x\left(x-1\right)\left(x^2+x+1\right)-x\left(x+1\right)\left(x^2-x+1\right)=10\)
\(\Leftrightarrow x\left(x^3-1\right)-x\left(x^3+1\right)=10\)
=>-2x=10
hay x=-5
d: \(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+...+\dfrac{1}{\left(x+7\right)\left(x+8\right)}=\dfrac{1}{14}\)
\(\Leftrightarrow\dfrac{1}{x+1}-\dfrac{1}{x+8}=\dfrac{1}{14}\)
\(\Leftrightarrow\left(x+1\right)\left(x+8\right)=14\left(x+8\right)-14\left(x+1\right)\)
\(\Leftrightarrow x^2+9x+8=14x+112-14x-14=98\)
\(\Leftrightarrow x^2+9x-90=0\)
\(\Leftrightarrow x\in\left\{6;-15\right\}\)
tính:
1 + 3 + 6 + 10 +....+ 45 + 55/ 1 x 10 + 2 x 9 + 3 x 8 +...+ 8 x 3 + 9 x 2 + 10 x 1
Tính bằng cách thuận tiện
a. 5/7 x 5/9 + 4/9 x 5/7
b. 1/10 + 5/9 + 4/9 + 9/10 – 1
c. 5/7 x 5/9 + 4/9 x 5/7 + 2/7
d. 2/7 + 2/8 + 1/4 + 1/7 + 4/7
e. 4/5 + 3/10 + 2/10 + 0,7
f. 326 x 728 + 326 x 272
a) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{4}{9}+\dfrac{5}{9}\right)\)
\(=\dfrac{5}{7}\times1\)
\(=\dfrac{5}{7}\)
b) \(\dfrac{1}{10}+\dfrac{5}{9}+\dfrac{4}{9}+\dfrac{9}{10}-1\)
\(=\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\left(\dfrac{1}{10}+\dfrac{9}{10}-1\right)\)
\(=1+0\)
\(=1\)
c) \(\dfrac{5}{7}\times\dfrac{5}{9}+\dfrac{4}{9}\times\dfrac{5}{7}+\dfrac{2}{7}\)
\(=\dfrac{5}{7}\times\left(\dfrac{5}{9}+\dfrac{4}{9}\right)+\dfrac{2}{7}\)
\(=\dfrac{5}{7}+\dfrac{2}{7}\)
\(=1\)
d) \(\dfrac{2}{7}+\dfrac{2}{8}+\dfrac{1}{4}+\dfrac{1}{7}+\dfrac{4}{7}\)
\(=\left(\dfrac{2}{8}+\dfrac{1}{4}\right)+\left(\dfrac{2}{7}+\dfrac{1}{7}+\dfrac{4}{7}\right)\)
\(=\left(\dfrac{1}{4}+\dfrac{1}{4}\right)+1\)
\(=\dfrac{1}{2}+1\)
\(=\dfrac{3}{2}\)
e) \(\dfrac{4}{5}+\dfrac{3}{10}+\dfrac{2}{10}+0,7\)
\(=\dfrac{4}{5}+\dfrac{5}{10}+\dfrac{7}{10}\)
\(=\dfrac{4}{5}+\dfrac{12}{10}\)
\(=\dfrac{4}{5}+\dfrac{6}{5}\)
\(=\dfrac{10}{5}\)
\(=2\)
g) \(362\times728+326\times272\)
\(=326\times\left(728+272\right)\)
\(=326\times1000\)
\(=326000\)
-9/10 x 5/14 + 1/10 x -9/2 + 1/7 x -9/10 =?
-9/10x(5/14+1/7)+1/10x-9/2
=-9/10x7/14+1/10x-9/2
-9/10x1/2+1/10x-9/2
=-9/20+--9/20
=-18/20=-9/10
Giải phương trình:
x(x+1)+(x+1)(x+2)+...+(x+9)(x+10)=x(x-1)-(x-1)(x-2)-(x-2)(x-3)-...-(x-9)(x-10)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(\frac{x+2}{x+1}-\frac{1}{x-2}=1-\frac{3}{x^2-x-2}\)
\(\frac{1}{x}+2=\left(\frac{1}{x}+2\right)\left(x^2+1\right)\)
\(\left(x+1+\frac{1}{x}\right)^2=\left(x-1-\frac{1}{x}\right)^2\)
\(\frac{x+9}{10}+\frac{x+10}{9}=\frac{9}{x+10}+\frac{10}{x+9}\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\left(x\ne1\right)\)
\(\Leftrightarrow\frac{1}{x-1}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x}{x^2+x+1}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2x^2-2x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\left(x^2+x+1-3x^2-2x^2+2x\right)=0\)
\(\Leftrightarrow-4x^2+3x+1=0\left(\frac{1}{\left(x-1\right)\left(x^2+x+1\right)}\ne0\right)\)
\(\Leftrightarrow-4x^2+4x-x+1=0\)
\(\Leftrightarrow-4x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\-4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\-4x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\left(loại\right)\\x=\frac{-1}{4}\end{cases}}}\)
Vậy \(x=\frac{-1}{4}\)
1/ x + 1/2 = -5/3 6/ x - 1/5 = 9/10
2/ 1/3 - x = 3/5 7/ x + 5/12 = 3/8
3/ 3-4 + x = 7/2 8/ x + 5/4 = 7/6
4/ x - 4/3 = -7/9 9/ x - 2/7 = 1/35
5/ x - -7/3 = 5/6 10/ x - 1/5 = -7/10
\(1,\\ x+\dfrac{1}{2}=-\dfrac{5}{3}\\ x=-\dfrac{5}{3}-\dfrac{1}{2}\\ x=-\dfrac{13}{6}\\ Vậyx=-\dfrac{13}{6}\)
\(2,\\ \dfrac{1}{3}-x=\dfrac{3}{5}\\ x=\dfrac{1}{3}-\dfrac{3}{5}\\ x=-\dfrac{4}{15}\\ Vậyx=-\dfrac{4}{15}\)
\(3,\\ 3-4+x=\dfrac{7}{2}\\ -1+x=\dfrac{7}{2}\\ x=\dfrac{7}{2}+1\\ x=\dfrac{9}{2}\\ Vậyx=\dfrac{9}{2}\)
\(4,\\ x-\dfrac{4}{3}=-\dfrac{7}{9}\\ x=-\dfrac{7}{9}+\dfrac{4}{3}\\ x=\dfrac{15}{27}\\ Vậyx=\dfrac{15}{27}\)
\(5,\\ x-\left(-\dfrac{7}{3}\right)=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{3}\\ x=-\dfrac{27}{18}\\ Vậyx=-\dfrac{27}{18}\)
\(6,\\ x-\dfrac{1}{5}=\dfrac{9}{10}\\ x=\dfrac{9}{10}+\dfrac{1}{5}\\ x=\dfrac{11}{10}\\ Vậyx=\dfrac{11}{10}\)
\(7,\\ x+\dfrac{5}{12}=\dfrac{3}{8}\\ x=\dfrac{3}{8}-\dfrac{5}{12}\\ x=-\dfrac{1}{24}\\ Vậyx=-\dfrac{1}{24}\)
\(8,\\ x+\dfrac{5}{4}=\dfrac{7}{6}\\ x=\dfrac{7}{6}-\dfrac{5}{4}\\ x=-\dfrac{9}{24}\\ Vậyx=-\dfrac{9}{24}\)
\(9,\\ x-\dfrac{2}{7}=\dfrac{1}{35}\\ x=\dfrac{1}{35}+\dfrac{2}{7}\\ x=\dfrac{11}{35}\\ Vậyx=\dfrac{11}{35}\\ 10,\\ x-\dfrac{1}{5}=-\dfrac{7}{10}\\ x=-\dfrac{7}{10}+\dfrac{1}{5}\\ x=-\dfrac{1}{2}\\ Vậyx=-\dfrac{1}{2}\)
ahiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii hãy ấn a
1/2 x 9/10 + 1/2 x 8/10 + 1/2 x 3/10
\(\frac{1}{2}.\frac{9}{10}+\frac{1}{2}.\frac{8}{10}+\frac{1}{2}.\frac{3}{10}=\frac{1}{2}.\left(\frac{9}{10}+\frac{8}{10}+\frac{3}{10}\right)=\frac{1}{2}.2=1\)
Dấu chấm là dấu nhân nhé
= \(\frac{1}{2}\times\left(\frac{9}{10}+\frac{8}{10}+\frac{3}{10}\right)=\frac{1}{2}\times\frac{20}{10}=\frac{1}{2}\times2=1\)