Viết phương trình đường thẳng d biết: a) d tiếp xúc vối (P) y=x^2/3 tại điểm (3;3)
1) Viết phương trình đường tròn đi qua A(1; 3) và tiếp xúc với 2 đường thẳng 5x+y-3=0 và -2x+7y-1 = 0
2) Viết pt đường tròn tâm thuộc đường thẳng 2x+y-0 và tiếp xúc với (d) x-7y+10=0 tại A(4;3)
1.
Gọi \(I\left(x;y\right)\) là tâm đường tròn \(\Rightarrow\overrightarrow{AI}=\left(x-1;y-3\right)\)
Do đường tròn tiếp xúc với \(d_1;d_2\) nên:
\(d\left(I;d_1\right)=d\left(I;d_2\right)\Rightarrow\dfrac{\left|5x+y-3\right|}{\sqrt{26}}=\dfrac{\left|2x-7y+1\right|}{\sqrt{53}}\)
Chà, đề đúng ko em nhỉ, thế này thì vẫn làm được nhưng rõ ràng nhìn 2 cái mẫu kia thì số liệu sẽ xấu 1 cách vô lý.
2.
Phương trình đường thẳng kia là gì nhỉ? \(2x+y=0\) à?
Viết phương trình đường thẳng (d) . Biết (d) // (D):y = 3/6x + 2 và tiếp xúc với (P): y =1/4x2 .Tìm tọa độ tiếp điểm I .
Trong mặt phẳng Oxy, viết phương trình đường tròn tiếp xúc với đường thẳng △ : \(\left\{{}\begin{matrix}x=-3+7t\\y=1+t\end{matrix}\right.\)tại điểm M(-5;2) và có tâm thuộc đường thẳng d: 2x - y - 6 = 0
Đề bài sai
Điểm \(M\left(-5;2\right)\) không thuộc \(\Delta\) nên (C) ko thể tiếp xúc với \(\Delta\) tại M
Trong mặt phẳng tọa độ: (P): y= 1/2x2 và (d): y= x+4. Viết phương trình đường thẳng (d') tiếp xúc với (P) tại điểm M(-2;2).
Bài 1. Cho hai điểm A(1;2) và B(3;4) và đường thẳng d: 3x+y+3=0.
1/ Viết phương trình các đường tròn \(\left(C_1\right)\) và \(\left(C_2\right)\) qua A, B và tiếp xúc với d.
2/ Viết phương trình tiếp tuyến chung (khác d) của hai đường tròn đó.
Trong mặt phẳng Oxy, cho điểm A(2;-4), đường thẳng Δ: x = -3 + 2t, y = 1 + t và đường tròn (C): x^2 + y^2 – 2x – 8y – 8 = 0.
a. Tìm một vectơ pháp tuyến n của đường thẳng Δ. Lập phương trình tổng quát của đường thẳng d, biết d đi qua điểm A và nhận n làm vectơ pháp tuyến.
b. Viết phương trình đường tròn (T), biết (T) có tâm A và tiếp xúc với Δ.
c. Gọi P, Q là các giao điểm của Δ và (C). Tìm toạ độ điểm M thuộc (C) sao cho tam giác MPQ cân tại M.
A nhé
hihhihihiihihihhiihhiihihihih
Bài 14: Cho (P): \(y=x^2\)
1. Gọi A và B là hai điểm thuộc (P) có hoành độ lần lượt là -1 và 2. Viết phương trình đường thẳng AB
2. Viết Phương trình đường thẳng (d) song song với AB và tiếp xúc với (P)
1.
\(x=-1\Rightarrow y=1\Rightarrow A\left(-1;1\right)\)
\(x=2\Rightarrow y=4\Rightarrow B\left(2;4\right)\)
Phương trình đường thẳng AB có dạng \(y=ax+b\) đi qua A và B nên ta có hệ:
\(\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\Rightarrow y=x+2\left(AB\right)\)
2.
\(\left(d\right)//\left(AB\right)\Rightarrow x-y+c=0\left(d\right)\)
Phương trình hoành độ giao điểm của \(\left(d\right);\left(P\right)\):
\(x+c=x^2\)
\(\Leftrightarrow x^2-x-c=0\)
\(\Delta=1+4c=0\Leftrightarrow c=-\dfrac{1}{4}\)
\(\Rightarrow x-y-\dfrac{1}{4}=0\left(d\right)\)
Trong cùng 1 mặt phẳng tọa độ cho (P): y=kx2 và 2 đường thẳng (d1): y=x+1 và (d2): x+2y+4=0
a, Tìm tọa độ giao điểm của (d1) và (d2) là A
b, Tìm giá trị của k để (P) đi qua A
c, Viết phương trình đường thẳng (d) biết (d) tiếp xúc với (P) tại A
Cho hàm số y=2x2 có đồ thị (P)
a, Vẽ đồ thị (P) của hàm số
b, Viết phương trình đường thẳng (d) tiếp xúc với (P) tiếp xúc với (P) tại một điểm có hoành độ x=-1