nếu n là số tự nhiên và n2 chia hết cho 3 thì n chia hết cho 3
cm bằng phương pháp phản chứng
Chứng minh phản chứng
a) Với n là số tự nhiên, n2 chia hết cho 2 thì n cũng chia hết cho 2 .
b) Với n là số tự nhiên,n3 chia hết cho 3 thì n cũng chia hết cho 3 .
c) Nếu a+b < 2 thì một trong hai số a và b nhỏ hơn 1.
chứng minh định lí sau bằng phản chứng:
"nếu n là số tự nhiên và n^2 chia hết cho 5 thì n chia hết cho 5"
Chứng minh định lý sau bằng phản chứng
“Nếu n là số tự nhiên và n2 chia hết cho 5 thì n chia hết cho 5”.
Giả sử phản chứng n ko chia hết cho 5
=> n có dạng là 5a + 1; 5b + 2; 5c + 3; 5d + 4
TH1: n = 5a + 1
=> \(n^2=\left(5a+1\right)^2=25a^2+10a+1\) ko chia hết cho 5
TH2: n = 5b + 2
=> \(n^2=\left(5b+2\right)^2=25b^2+20b+4\) ko chia hết cho 5
TH3: n = 5c + 3
=> \(n^2=\left(5c+3\right)^2=25c^2+30c+9\) ko chia hết cho 5
TH4: n = 5d + 4
=> \(n^2=\left(5d+4\right)^2=25d^2+40d+16\) ko chia hết cho 5
VẬY QUA 4 TRƯỜNG HỢP THÌ TA THẤY ĐIỀU GIẢ SỬ LÀ SAI
=> ĐIỀU PHẢI CHỨNG MINH: \(n^2⋮5\Rightarrow n⋮5\)
Giả sử n2 chia hết cho 5 và n không chia hết cho 5.
Nếu n=5k\(\pm\)1 \(\left(k\inℕ\right)\)thì \(n^2=25k^2\pm10k+1=5\left(5k^2\pm2k\right)+1⋮̸5\)
Nếu \(n=5k\pm2\left(k\inℕ\right)\)thì \(n^2=25k^2\pm20k+4=5\left(5k^2\pm4k\right)+4⋮̸5\)
Điều này mâu thuẫn với giả thiết n2 chia hết cho 5
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
Chứng minh rằng: Với mọi số tự nhiên sao cho n2 chia hết cho 3 thì n chia hết cho 3
chứng minh rằng nếu a và b là các số tự nhiên thỏa mãn 5a+3b và 13a+8b cũng chia hết cho 2015 thì a chia hết cho 2015 và b cũng chia hết chia hết cho 2015
2)tìm số tự nhiên n để
(15-2n) chia hết cho (n+1) với n nhỏ hơn hoặc bằng 7
Chứng minh rằng:
a) n và n5 có chữ số tận cùng giống nhau với n là số tự nhiên.
b) n2 luôn luôn chia cho 3 dư 1 với n không chia hết cho 3 và n là số tự nhiên.
a) Xét hiệu : \(n^5-n\)
Đặt : \(A\text{=}n^5-n\)
Ta có : \(A\text{=}n.\left(n^4-1\right)\text{=}n.\left(n^2-1\right)\left(n^2+1\right)\)
\(A\text{=}n.\left(n+1\right).\left(n-1\right).\left(n^2+1\right)\)
Vì : \(n.\left(n+1\right)\) là tích hai số tự nhiên liên tiếp .
\(\Rightarrow A⋮2\)
Ta có : \(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2+1\right)\)
\(A\text{=}n\left(n+1\right)\left(n-1\right)\left(n^2-4+5\right)\)
\(A\text{=}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)+5n.\left(n+1\right)\left(n-1\right)\)
Ta thấy : \(\left\{{}\begin{matrix}n\left(n-1\right)\left(n+1\right)\left(n-2\right)\left(n+2\right)⋮5\\5n\left(n-1\right)\left(n+1\right)⋮5\end{matrix}\right.\) vì tích ở trên là tích của 5 số liên tiếp nên chia hết cho 5.
Do đó : \(A⋮10\)
\(\Rightarrow A\) có chữ số tận cùng là 0.
Suy ra : đpcm.
b) Vì \(n⋮3̸\) nên n có dạng : \(3k+1hoặc3k+2\left(k\in N\right)\)
Với : n= 3k+1
Thì : \(n^2\text{=}9k^2+6k+1\)
Do đó : \(n^2\) chia 3 dư 1.
Với : n=3k+2
Thì : \(n^2\text{=}9k^2+12k+4\text{=}9k^2+12k+3+1\)
Do đó : \(n^2\) chia 3 dư 1.
Suy ra : đpcm.
Cho số tự nhiên n có 3 chữ số,biết n và 3.n có tổng các chữ số như nhau a)chứng minh rằng n chia hết cho 9 b)tìm n nếu n là số chính phương chia hết cho 7
Cho số tự nhiên n có 3 chữ số,biết n và 3.n có tổng các chữ số như nhau a)chứng minh rằng n chia hết cho 9 b)tìm n nếu n là số chính phương chia hết cho 7
Giải:
a) Ta có: n và 3.n có tổng chữ số như nhau
Mà \(3.n⋮3\)
\(\Rightarrow3.n\) có tổng các chữ số ⋮ 3
\(\Rightarrow n\) có tổng các chữ số ⋮ 3 (Vì tổng chữ số của n = tổng các chữ số của 3.n)
\(\Rightarrow3.n\) ⋮ 9 (n có tổng các chữ số ⋮ 3)
\(\Rightarrow n\) có tổng các chữ số ⋮ 9
\(\Rightarrow n⋮9\)
a) Ta có: n và 3.n có tổng chữ số như nhau
Mà 3.n⋮3 ⇒3.n có tổng các chữ số ⋮ 3
⇒n có tổng các chữ số ⋮ 3 (Vì tổng chữ số của n = tổng các chữ số của 3.n)
⇒3.n ⋮ 9 (n có tổng các chữ số ⋮ 3)⇒
n có tổng các chữ số ⋮ 9
⇒n⋮9