Tìm giá trị của biểu thức P=28a^b-9ab^2 với a, b thoả mãn: (a-b)^2+(ab+1)^100=<0
Tìm giá trị của biểu thức P=28a^2b-9ab^2 với a, b thoả mãn: (a-3)^2+(3b+1)^100 <hoặc = 0
(a-3)^2+(3b+1)^2<=0
=>a-3=0 và 3b+1=0
=>a=3 và b=-1/3
P=28*3^2*(-1/3)-9*3(-1/3)^2
=-28-3=-31
Cho các số a, b thoả mãn a^2 + 9ab - 22b^2=0 và b ≠0. Tính giá trị của biểu thức M= a + 3b/2a - b
a^2+9ab-22b^2=0
=>a^2+11ab-2ab-2b^2=0
=>(a+11b)(a-2b)=0
=>a=2b hoặc a=-11b
TH1: a=2b
\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)
TH2: a=-11b
\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)
Với các số thực a,b thoả mãn a^2+b^2=2.Tìm giá trị nhỏ nhất của biểu thức
cho mình bổ sung là P=3(a+b)+ab
cho hai số a, b thoả mãn a^2+b^2=1. tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A=a^6+b^6
Ta có
A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)
= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)
Ta lại có
1 = a2 + b2 \(\ge\)2ab
\(\Rightarrow ab\le\frac{1}{2}\)(2)
Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)
Đạt được khi a2 = b2 = 0,5
Giá trị lớn nhất không có
Cho các số thực dương a,b thoả mãn \(ab+2\le b.\)Tìm giá trị nhỏ nhất của biểu thức P=\(a+2b^2+\frac{1}{a^2}+\frac{2}{b}.\)
Dạng này nhìn mệt vãi:(
Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)
Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:
Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:
\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v
Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!
a) tìm giá trị lớn nhất của biểu thức P=6:(x.x-6x+17)
b) cho a, b thoả mãn a.a +b.b-ab=6 Tìm giá trị lớn nhất của biểu thức P=a.a+b.b
a.
\(P=\frac{6}{x^2-6x+17}\)
Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$
$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$
Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$
b/
Ta có:
$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$
$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$
$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$
Cho 3 số a,b,c thoả mãn a+b+c=2. Tìm giá trị nhỏ nhất của biểu thức A=a^2+b^2+c^2
Áp dụng BĐT Bun-hia-cop-xki ta có:
\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)
Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)
Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)
\(=4-2\left(ab+bc+ca\right)\)
Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min
cho a,b,c là các số thực dương thoả mãn \(ab+bc+ca\ge3\) tìm giá trị nhỏ nhất của biểu thức A= \(\dfrac{a^2+b^2+c^2}{\sqrt{a+2016}+\sqrt{b+2016}+\sqrt{c+2016}}\)
Với hai số thực không âm a,b thoả mãn \(a^2+b^2=4\) , tìm giá trị lớn nhất của biểu thức: \(M=\frac{ab}{a+b+2}\)