Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Bao Ngan
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 7 2023 lúc 21:59

(a-3)^2+(3b+1)^2<=0

=>a-3=0 và 3b+1=0

=>a=3 và b=-1/3

P=28*3^2*(-1/3)-9*3(-1/3)^2

=-28-3=-31

Tạ Đức Hưng
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 7 2023 lúc 23:46

a^2+9ab-22b^2=0

=>a^2+11ab-2ab-2b^2=0

=>(a+11b)(a-2b)=0

=>a=2b hoặc a=-11b

TH1: a=2b

\(M=\dfrac{2b+3b}{4b-b}=\dfrac{5}{3}\)

TH2: a=-11b

\(M=\dfrac{-11b+3b}{-22b-b}=\dfrac{8}{23}\)

éwjne
Xem chi tiết
éwjne
13 tháng 6 2021 lúc 22:28

cho mình bổ sung là P=3(a+b)+ab

Khách vãng lai đã xóa
Hoàng Tử Lớp Học
Xem chi tiết
alibaba nguyễn
17 tháng 11 2016 lúc 20:25

Ta có 

A = a6 + b6 = (a2 + b2)(a4 - a2 b2 + b4)

= a4 - a2 b2 + b4 = (a2 + b2)2 - 3a2b2 = 1 - 3a2 b2 (1)

Ta lại có

1 = a2 + b2 \(\ge\)2ab

\(\Rightarrow ab\le\frac{1}{2}\)(2)

Từ (1) và (2) =>A \(\ge1-\frac{3}{4}=\frac{1}{4}\)

Đạt được khi a2 = b2 = 0,5

Giá trị lớn nhất không có

Tiến Nguyễn Minh
Xem chi tiết
tth_new
21 tháng 8 2019 lúc 8:15

Dạng này nhìn mệt vãi:(

Do b > 0 nên chia hai vế của giả thiết cho b, ta được: \(a+\frac{2}{b}\le1\)

Bây giờ đặt \(a=x;\frac{2}{b}=y\). Bài toán trở thành:

Cho x, y là các số dương thỏa mãn \(x+y\le1\). Tìm Min:

\(P=x+y+\frac{1}{x^2}+\frac{8}{y^2}\). Quen thuộc chưa:v

Ko biết có tính sai chỗ nào không, nhưng hướng làm là vậy đó!

Minh Hoàng
Xem chi tiết
Akai Haruma
12 tháng 10 2024 lúc 18:06

a.

\(P=\frac{6}{x^2-6x+17}\)

Ta thấy: $x^2-6x+17=(x-3)^2+8\geq 8$ với mọi $x\in\mathbb{R}$

$\Rightarrow P=\frac{6}{x^2-6x+17}\leq \frac{6}{8}=\frac{3}{4}$

Vậy $P_{\max}=\frac{3}{4}$. Giá trị này đạt tại $x-3=0\Leftrightarrow x=3$

Akai Haruma
12 tháng 10 2024 lúc 18:08

b/

Ta có:

$6=a^2+b^2-ab=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a^2+b^2-2ab)$

$=\frac{1}{2}(a^2+b^2)+\frac{1}{2}(a-b)^2\geq \frac{1}{2}(a^2+b^2)$ với mọi $a,b$

$\Rightarrow 12\geq a^2+b^2$
Vậy $P_{\max}=12$. Giá trị này đạt tại $a=b=\pm \sqrt{6}$

Nguyễn thị hà
Xem chi tiết
Con Chim 7 Màu
11 tháng 4 2019 lúc 9:25

Áp dụng BĐT Bun-hia-cop-xki ta có:

\(\left(a^2+b^2+c^2\right)\left(1^2+1^2+1^2\right)\ge\left(a+b+c\right)^2\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\Leftrightarrow a^2+b^2+c^2\ge\frac{4}{3}\)

Dấu '=' xảy ra khi \(\hept{\begin{cases}a=b=c\\a+b+c=2\end{cases}\Leftrightarrow a=b=c=\frac{2}{3}}\)

Vậy \(A_{min}=\frac{4}{3}\)khi \(a=b=c=\frac{2}{3}\)

tth_new
11 tháng 4 2019 lúc 10:00

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Suy ra \(A=\left(a+b+c\right)^2-2\left(ab+bc+ca\right)\)

\(=4-2\left(ab+bc+ca\right)\)

Ta có BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\).Thay vào tìm được min

Xem chi tiết
Lê Hà Phương
Xem chi tiết