Cho a, b, c là các số dương thỏa mãn \(a+b+c\ge3\) .
Tìm giá trị nhỏ nhất của biểu thức \(P=\frac{a^2}{a+\sqrt{bc}}+\frac{b^2}{b+\sqrt{ca}}+\frac{c^2}{c+\sqrt{ab}}\)
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1.Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho a, b, c là các số thực dương thoả mãn:
\(a+b+c=3\)
và \(\sqrt{a}+\sqrt{b}+\sqrt{c}+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=6\)
Tính giá trị của biểu thức: \(M=\dfrac{a^{30}+b^4+c^{1975}}{a^{30}+b^4+c^{2023}}\)
Cho các số thực dương \(a,b,c\) thỏa mãn : \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\). Tìm giá trị lớn nhất của biểu thức :
\(P=\sqrt{\dfrac{a}{a+bc}}+\sqrt{\dfrac{b}{b+ac}}+\sqrt{\dfrac{c}{c+ab}}\)
Cho các số thực dương a,b,c thoả mãn ac + b2 = 2bc. Tìm giá trị nhỏ nhất của biểu thức
P = \(x = {2a^2 + b^2 \over \sqrt{a^2b^2- ab^3 + 4b^4}} + {2b^2 + c^2 \over \sqrt{b^2c^2- bc^3 + 4c^4}}\)