Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1.Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho ba số thực dương a,b,c thỏa mãn ab+bc+ca = 3abc. Tìm giá
trị lớn nhất của biểu thức T = \(\sqrt{\dfrac{a}{3b^2c^2+abc}}+\sqrt{\dfrac{b}{3b^2c^2+abc}}+\sqrt{\dfrac{c}{3a^2b^2+abc}}\)
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
1. Cho các số thực dương a, b, c thỏa mãn abc=a+b+c+2.
Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{1}{\sqrt{a^2+b^2}}+\dfrac{1}{\sqrt{b^2+c^2}}+\dfrac{1}{\sqrt{c^2+a^2}}\)
cho a,b,c là các số thực dương thoả mãn \(b=\dfrac{c+a}{2}\).
Tính giá trị của biểu thức \(P=\left(\dfrac{1}{\sqrt{a}+\sqrt{b}}+\dfrac{1}{\sqrt{b}+\sqrt{c}}\right).\left(\sqrt{a}+\sqrt{c}\right)\)
12.
Cho các số thực a, b, c dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\le3.\)
Tính giá trị lớn nhất của biể thức: \(P=\dfrac{1}{\sqrt{a^2-ab+3b^2+1}}+\dfrac{1}{\sqrt{b^2-bc+3c^2+1}}+\dfrac{1}{\sqrt{c^2-ac+3a^2+1}}\)
13.
Cho các số thực dương a, b, c thỏa mãn: \(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\le1\).
Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{a^3}{a^2+ab+b^2}+\dfrac{b^3}{b^2+bc+c^2}+\dfrac{c^3}{c^2+ac+a^2}\)
14.
Xét các số x, y, z thay đổi thỏa mãn \(x^3+y^3+z^3-3xyz=2\)
Tìm giá trị nhỏ nhất của biểu thức:
\(P=\dfrac{1}{2}\left(x+y+z\right)^2+4\left(x^2+y^2+z^2-xy-yz-xz\right)\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)