a^4+a^3b+ab^3+b^4>=4
Cmr a^4 + b^4 >= a^3b + ab^3
a4 + b4 >= a^3b+ab^3
<=> a^4 + b^4 - a^3b + ab^3>=0
<=> a^3(a-b) - b^3(a-b)>=0
<=> (a-b)(a^3-b^3)>=0
<=> (a-b)^2(a^2+ab+b^2)>=0
(a-b)^2 >=0 (luôn luôn); a^2+ab+b^2>=0
a4 + b4 >= a^3b+ab^3
<=> a^4 + b^4 - a^3b + ab^3>=0
<=> a^3(a-b) - b^3(a-b)>=0
<=> (a-b)(a^3-b^3)>=0
<=> (a-b)^2(a^2+ab+b^2)>=0
(a-b)^2 >=0 (luôn luôn); a^2+ab+b^2>=0
giả sử a^4+b^4>/a^3b+ab^3
<=> a^4+b^4-a^3b-ab^3>/0
<=> a^3(a-b)+b^3(b-a)>/0
<=> a^3(a-b)-b^3(a-b)>/0
<=> (a-b)(a^3-b^3)>/0
<=> (a-b)(a-b)(a^2+ab+b^2)>/0
<=> (a-b)^2.(a^2+ab+b^2)>/0
vì (a-b)^2>/0 (với moi a,b),a^2+ab+b^2>/0 (với mọi a,b)
=> (a-b)^2.(a^2+ab+b^2)>/0 (với mọi a,b) đúng
vậy a^4+b^4>/a^3b+ab^3 (đpcm)
CMR : a^4 + b^4 - ab^3 - a^3b >_0
\(a^4+b^4-ab^3-a^3b\ge0\)
\(\Leftrightarrow\left(a^4-ab^3\right)+\left(b^4-a^3b\right)\ge0\)
\(\Leftrightarrow a\left(a^3-b^3\right)-b\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)
(Luôn đúng vì \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{b^2}{4}\ge0\))
Vậy có đpcm.
cma^4+b^4>=a^3b+ab^3 với mọi ab
CMR : \(\dfrac{a^4+b^4}{2}\ge ab^3+a^3b-a^2b^2\)
\(\Leftrightarrow a^4+b^4+2a^2b^2-2a^3b-2ab^3\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)^2-2ab\left(a^2+b^2\right)\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(a-b\right)^2\ge0\) (luôn đúng)
Chứng minh bất đẳng thức \(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4-a^3b+b^4-ab^3>=0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)>=0\)
\(\Leftrightarrow\left(a-b\right)^2\cdot\left(a^2+ab+b^2\right)>=0\)(luôn đúng)
Tính giá trị của biểu thức a) 14x + 5y/3x - 11y với x/y=1/3 b) 11a^4 - 3ab^3 + 15a^3b + 7b^4/3a^2b^2 + ab^3 - 6a^3b - 2b^4 với a/b=1/2
chứng minh rằng (a^4+b^4)/2>=ab^3+a^3b-(a^2).(b^2)
\(a^4+b^4\ge a^3b+ab^3\)
Ta có: \(a^4+b^4\ge2a^2b^2\) (BĐT Cô-si) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)2a^2b^2\) \(\Leftrightarrow\left(a^4+b^4\right)^2\ge\left(a^4+b^4\right)\left(a^2b^2+a^2b^2\right)\ge\left(a^3b+ab^3\right)^2\) (BĐT Bunhiacopxki) \(\Rightarrow\left(a^4+b^4\right)^2\ge\left(a^3b+ab^3\right)^2\) \(\Rightarrow a^4+b^4\ge a^3b+ab^3\) (ĐPCM)
\(a^4+b^4\ge a^3b+ab^3\)
Bạn vào câu hỏi tương tự sẽ có lời giải !
\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^4+b^4-a^3b-ab^3\ge0\)
\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)\left(a^2+ab+b^2\right)\right]\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)(luôn đúng )
Vậy ta có ĐPCM