Cho tam giác ABC. Gọi M là trung điểm BC, I là trung điểm AM. Tia BI cắt AC tại D
a) Chứng minh rằng: AD=1/2 DC
b) Chứng minh rằng: ID=1/4 BD
cho tam giác ABC, có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt cạnh AC tại D
a, chứng minh rằng AC = 3 . AD
b, chứng minh rằng ID =1/ 4 BD
trung tuyến là j??????mk chưa học đến
trung tuyến là đường từ đỉnh của tam giác nối với trung điểm của cạnh đối diện
Cho tam giác ABC. Gọi M là trung điểm của BC, I là trung điểm của AM. Tia BI cắt AC ở D. Qua M kẻ đường thẳng song song với BD cắt AC ở E. Chứng minh rằng:
a) AD=DE=EC
b) ID=1/4BD
Bạn tự vẽ hình nha.
a) Có BD//ME hay ID//ME
Xét ΔAME, có :
I là trung điểm của AM (gt), ID//ME (cmt)
=> D là trung điểm của AE
Hay AD=ED. (1)
Xét ΔDBC, có :
M là trung điểm của BC(gt), BD//ME(gt)
=> E là trung điểm của DC
Hay DE=CE (2)
Từ (1) và (2) => AD=ED=CE. ( đpcm)
b)
Xét ΔBDC, có
BM=CM(cm câu a), DE=CE(cm câu a)
=>ME là đường trung bình của ΔBDC
=>ME= 1/2 BD. (*)
Xét ΔAME, có:
AI=IM (cm câu a), AD=DE(cm câu a)
=> ID là đường trung bình của ΔAME
=> ID= 1/2 ME (**)
Từ (*) và (**) => ID= 1/2ME, mà ME=1/2BD
=> ID=1/2 . 1/2 BD
=> ID = 1/4 BD (đpcm)
a) Cho tam giác ABC, M là trung điểm của BC, D trên AC sao cho CD = 2AD. AM cắt BD tại I. Chứng minh I là trung điểm của AM
b) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt AC tại D. Chứng minh AD = 1/2DC
Cho tam giác ABC trung tuyến AM (M thuộc BC) có I là trung điểm của AM. Tia BI cắt AC tại D. Gọi E là trung điểm của DC.
a) Chứng minh ME = \(\dfrac{1}{2}\) BD
b) Chứng minh D là trung điểm của AE.
c) Chứng minh BD = 4ID.
a: Xét ΔBDC có
M là trung điểm của BC
E là trung điểm của DC
Do đó: ME là đường trung bình của ΔBDC
Suy ra: ME//BD và \(ME=\dfrac{1}{2}BD\)
b: Xét ΔAME có
I là trung điểm của AM
ID//ME
Do đó: D là trung điểm của AE
Bài 4. Cho tam giác ABC, trên cạnh AC lấy các điểm D và E sao cho AD=DE = EC. Gọi M là trung điểm của BC , BD cắt AM tại I
a) Chứng minh ME // BD
b) Chứng minh I là trung điểm của AM
c) Chứng minh ID = 1/4 BD
a) Xét tam giác BDC có:
M là trung điểm BC(gt)
E là trung điểm DC(DE=EC)
=> ME là đường trung bình
=> ME//BD
b) Xét tam giác AME có:
ME//BD
D là trung điểm AE(AD=DE)
=> I là trung điểm AM
c) Xét tam giác AME có:
D là trung điểm AE(AD=DE)
I là trung điểm AM(cmt)
=> ID là đường trung bình
\(\Rightarrow ID=\dfrac{1}{2}ME\)
Mà \(ME=\dfrac{1}{2}BD\)(do ME là đường trung bình tam giác BDC)
\(\Rightarrow ID=\dfrac{1}{2}.\dfrac{1}{2}BD=\dfrac{1}{4}BD\)
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối tia IB lấy điểm D sao cho ID=IB.
a) Chứng minh: tam giác IAB= tam giác ICD
b) Gọi M là trung điểm BC. AM cắt BI tại G
Chứng minh: BG= 2/3 ID
c) Gọi N là trung điểm CD. AN cắt DI tại K. Chứng minh: BG=GK=KD
a: Xét ΔiAB và ΔICD có
IA=IC
góc AIB=góc CID
IB=ID
=>ΔIAB=ΔICD
b: Xét ΔBAC có
BI,AM là trung tuyến
BI cắt AM tại G
=>G là trọng tâm
=>BG=2/3BI=2/3ID
c: Xét ΔDAC có
DI,AN là trung tuyến
DI cắt AN tại K
=>K là trọng tâm
=>DK=2/3DI=2/3*1/2*DB=1/3DB
BG=2/3BI
=>BG=2/3*1/2BD=1/3BD
BG+GK+KD=BD
=>GK=1/3BD=DK=BG
Cho tam giác ABC, trung tuyến AM. Gọi I là trung tuyến của AM, D là trung điểm của BI và AC.
a) Chứng minh: AD = 1/2 DC
b) So sánh độ dài BD và ID
cho tam giác ABC, M là trung điểm của BC, I là trung điểm của AM. Tia CI cắt cạnh AB ở D. Chứng minh rằng:
a) AD = 1/2 BD
b) ID = 1/4 CD
Bài 1:Cho tam giác ABC vuông tại A có AM là đường trung tuyến.Gọi N là trung điểm của AC
1)Chứng minh \(MN\perp AC\)
2)Tam giác AMC là tam giác gì?Vì sao?
3)Chứng minh 2AM=BC
Bài 2:Cho tam giác ABC nhọn có 2 đường cao BD và CE.Gọi M,N là trung điểm của BC và DE
1)Chứng minh \(DM=\dfrac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN \(\perp\) DE
Bài 3:Cho tam giác ABC trên AC lấy theo thứ tự điểm D và E sao cho AD=DE=EC.Gọi M là trung điểm của BC,BD cắt AM tại I
1)Chứng minh ME//BD
2)Chứng minh I là trung điểm của AM
3)Chứng minh ID=\(\dfrac{1}{4}\) BD
Bài 4:Cho tam giác ABC có AM là trung tuyến.Lấy D thuộc AC sao cho \(AD=\dfrac{1}{2}DC\).Kẻ ME//BD (E thuộc CD), BD cắt AM tại I
1)Chứng minh AD=DE=EC
2)Chứng minh I là trung điểm AM