Cho \(x+y+z=0.\)
Chứng minh rằng :
\(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+3xyz=0\)
Cho x,y,z>0; x+y+z=1
Tính \(Q=\sqrt{\dfrac{\left(x+yz\right)\left(y+xz\right)}{xy+z}}+\sqrt{\dfrac{\left(y+xz\right)\left(z+xy\right)}{x+yz}}+\sqrt{\dfrac{\left(x+yz\right)\left(z+xy\right)}{y+xz}}\)
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Chứng minh rằng :
\(\frac{x-y}{1+xy}+\frac{y-z}{1+yz}+\frac{z-x}{1+xz}=\frac{\left(x-y\right)\left(y-z\right)\left(z-x\right)}{\left(1+xy\right)\left(1+yz\right)\left(1+xz\right)}\)
Cho x, y, z > 0 và xy + yz + xz = 3xyz. Tìm GTNN của:
\(A=\frac{x^2}{z\left(z^2+x^2\right)}+\frac{y^2}{x\left(x^2+y^2\right)}+\frac{z^2}{y\left(y^2+z^2\right)}\)
Cho x,y,z > 0 thỏa mãn xy + yz + xz = 1 . Chứng minh \(\dfrac{27}{4}\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge\left(\sqrt{x+y}+\sqrt{y+z}+\sqrt{x+z}\right)^2\ge6\sqrt{3}\)
cho \(x;y;z>0\)
\(xy+yz+xz=xyz\)
và \(\left(x+y\right)\left(\frac{1}{z}+\frac{1}{xy}\right)+\left(y+z\right)\left(\frac{1}{x}+\frac{1}{yz}\right)+\left(x+z\right)\left(\frac{1}{y}+\frac{1}{xz}\right)=1\)
tính giá trị của biểu thức
\(A=\sqrt{\frac{\left(2x+yz\right)\left(2y+xz\right)}{\left(y+z\right)\left(x+z\right)}}+\sqrt{\frac{\left(2y+xz\right)\left(2z+xy\right)}{\left(x+z\right)\left(x+y\right)}}+\sqrt{\frac{\left(2z+xy\right)\left(2x+yz\right)}{\left(x+y\right)\left(y+z\right)}}\)
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
Cho \(z^2+2\left(xy-xz-yz\right)=0,x+y\ne z,y\ne z\)
Chứng minh: \(\dfrac{x^2+\left(x-z\right)^2}{y^2+\left(y-z\right)^2}=\dfrac{x-z}{y-z}\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
Cho ba số x,y,z không âm thỏa mãn x+y+z=3. Chứng minh rằng:
\(\left(x^3+y^3+z^3\right)\left(x^3y^3+y^3z^3+z^3x^3\right)\le36\left(xy+yz+xz\right)\)
Cách này đòi hỏi sự kiên nhẫn và kinh nghiệm.
Cần chứng minh:
\({\dfrac {4 \left( xy+zx+yz \right) \left( x+y+z \right) ^{7}}{ 243}}- \left( {x}^{3}+{y}^{3}+{z}^{3} \right) \left( {x}^{3}{y}^{3}+{ x}^{3}{z}^{3}+{y}^{3}{z}^{3} \right) \geqslant 0.\quad(1) \)
Đặt
\(\text{M}=4\,{z}^{7}+ \left( 757\,x+757\,y \right) {z}^{6}+84\, \left( x+y \right) ^{2}{z}^{5}+140\, \left( x+y \right) ^{3}{z}^{4}\\\quad\quad+ \left( 1598 \,{x}^{4}+4205\,{x}^{3}y+4971\,{x}^{2}{y}^{2}+4205\,x{y}^{3}+1598\,{y} ^{4} \right) {z}^{3}\\\quad \quad+84\, \left( x+y \right) ^{5}{z}^{2}+28\, \left( x +y \right) ^{6}z\geqslant 0 \)
Ta có:
\((1)\Leftrightarrow \dfrac{1}{243}xy\cdot M+{\dfrac { \left( x+y \right) \left( {x}^{2}+11\,xy+{y}^{2} \right) \left( 2\,x-y \right) ^{2} \left( x-2\,y \right) ^{2}xy}{243}}\\\quad\quad+{ \dfrac { \left( x+y \right) z \left( x+y+z \right) \left( {x}^{2}+2\,x y+11\,zx+{y}^{2}+11\,yz+{z}^{2} \right) \left( 2\,y-z+2\,x \right) ^{ 2} \left( y-2\,z+x \right) ^{2}}{243}}\geqslant 0. \)
Đẳng thức xảy ra khi $...$
Cho \(\hept{\begin{cases}x,y,z>0\\xy+yz+zx=1\end{cases}}\). Chứng minh rằng:
\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge3+\sqrt{\frac{\left(x+y\right)\left(x+z\right)}{x^2}}+\sqrt{\frac{\left(y+z\right)\left(y+x\right)}{y^2}}+\sqrt{\frac{\left(z+x\right)\left(z+y\right)}{z^2}}\)
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.