cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Cho x,y,z>0; x+y+z=1
Tính \(Q=\sqrt{\dfrac{\left(x+yz\right)\left(y+xz\right)}{xy+z}}+\sqrt{\dfrac{\left(y+xz\right)\left(z+xy\right)}{x+yz}}+\sqrt{\dfrac{\left(x+yz\right)\left(z+xy\right)}{y+xz}}\)
Cho x,y,z thỏa mãn xy+yz+xz = 1.Tính
\(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho 3 số dương x,y,z thõa mãn đk xy+yz+xz=1
Tính gt của bt:\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)
1/Cho x,y là các số thực dương thỏa mãn: x+y≤4. Tìm GTNN \(P=\dfrac{x^4}{\left(y-1\right)^3}+\dfrac{y^4}{\left(x-1\right)^3}\)
2/ Cho x,y,z nguyên thỏa mãn :x+y+z=2013.Chứng minh:
\(Q=\left(x^2+xy+yz\right)^3+\left(y^2+yz+xz\right)^3+\left(z^2+xz+xy\right)^3⋮3\)
Cho x,y,z>0 và xyz=1. Tìm GTNN của Q = \(\dfrac{xy}{z^2\left(x+y\right)}+\dfrac{yz}{x^2\left(y+z\right)}+\dfrac{zx}{y^2\left(x+z\right)}\)
Cho x,y,z>0 và \(x+y+z\le\dfrac{3}{4}\). Tìm Min A = \(\Sigma\dfrac{x^3}{\sqrt{y^2+3}}\)
Cho x,y,z> 0 và xy+yz+xz = 3xyz . Tìm MaxP = \(\Sigma\dfrac{yz}{x^3\left(z+2y\right)}\)
Xét các số thực dương x, y, z thay đổi sao cho: \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng: \(\dfrac{1}{x+2}+\dfrac{1}{y+2}+\dfrac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\dfrac{xy}{x+y}-\dfrac{yz}{y+z}-\dfrac{zx}{z+x}\)
Cho x,y,z>0 và xy+yz+zx=1
Tính giá trị bt:
\(P=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)