Ta có 1+x2 = xy + yz + xz +x2 = ( x+ z)(x+y)
TT : 1+y2 = (y+z)(y+x)
1+z2 = (z+x)(z+y)
⇒ P = 2
Vậy P =2
Ta có 1+x2 = xy + yz + xz +x2 = ( x+ z)(x+y)
TT : 1+y2 = (y+z)(y+x)
1+z2 = (z+x)(z+y)
⇒ P = 2
Vậy P =2
Cho 3 số dương x,y,z thõa mãn đk xy+yz+xz=1
Tính gt của bt:\(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+y^2\right)\left(1+x^2\right)}{1+z^2}}\)
Cho x,y,z thỏa mãn xy+yz+xz = 1.Tính
\(S=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x,y,z>0 /xyz=8.
Tìm min P= \(\dfrac{x^2}{\sqrt{\left(1+x^3\right)\left(1+y^3\right)}}+\dfrac{y^2}{\sqrt{\left(1+y^3\right)\left(1+z^3\right)}}+\dfrac{z^2}{\sqrt{\left(1+z^3\right)\left(1+x^3\right)}}\)
Cho x,y,z > 0 và xy + yz + zx = 1
Tính giá trị biểu thức: \(P=x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
a) Cho x,y,z thỏa mãn x+y+z+xy+yz+zx=6. Tìm Min \(P=x^2+y^2+z^2\)
giải hệ pt : 1) \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\sqrt{2-\dfrac{1}{y}}=2\\\dfrac{1}{\sqrt{y}}+\sqrt{2-\dfrac{1}{x}}=2\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x^2+xy+y^2=7\\x^4+x^2y^2+y^4=21\end{matrix}\right.\)
cho x,y,z thỏa mãn \(x+y+z\le\dfrac{3}{2}\) . tìm GTNN của \(P=\dfrac{x\left(yz+1\right)^2}{z^2\left(xz+1\right)}+\dfrac{y\left(xz+1\right)^2}{y^2\left(xy+1\right)}+\dfrac{z\left(xy+1\right)^2}{x^2\left(yz+1\right)}\)
Tìm GTLN của biếu thức
P= x\(\sqrt{\dfrac{\left(1+y^2\right).\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right).\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right).\left(1+y^2\right)}{1+z^2}}\)
Cho 3 số dương x, y, z thỏa mãn điều kiện xy + yz + zx = 1. Tính tổng:
\(S=\sqrt[x]{\frac{\left(1+y^2\right)\left(1+z^2\right)}{\left(1+x^2\right)}}+\sqrt[y]{\frac{\left(1+x^2\right)\left(1+z^2\right)}{\left(1+y^2\right)}}+\sqrt[z]{\frac{\left(1+x^2\right)\left(1+y^2\right)}{\left(1+z^2\right)}}\)