tìm số x là số nguyên tố nhỏ nhất sao cho x-2020 và x-5 đều là số chính phương
Bài 5: Tìm số tự nhiên a nhỏ nhất sao cho A + 1 chia hết cho 2, a chia hết cho tích của hai số nguyên tố liên tiếp và tích 2023 x a là số chính phương
Cứu mik với
Để tìm số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên, chúng ta có thể thử từng giá trị của a cho đến khi tìm được số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Theo yêu cầu của bài toán, ta có:
A + 1 chia hết cho 2: Điều này có nghĩa là A là số lẻ. a chia hết cho tích của hai số nguyên tố liên tiếp: Điều này có nghĩa là a chia hết cho 2 hoặc a chia hết cho 3. Tích 2023 x a là số chính phương: Điều này có nghĩa là 2023 x a là một số mà căn bậc hai của nó là một số nguyên.Với các điều kiện trên, chúng ta có thể thử từng giá trị của a để tìm số a thỏa mãn. Tuy nhiên, để giải quyết bài toán này một cách nhanh chóng, chúng ta có thể sử dụng phương pháp phân tích số học.
Ta có thể phân tích số 2023 thành tích của các thừa số nguyên tố như sau: 2023 = 7 x 17 x 17. Vì vậy, để tích 2023 x a là một số chính phương, ta cần a chia hết cho 7 và 17.
Tiếp theo, ta xét điều kiện a chia hết cho 2 hoặc a chia hết cho 3. Ta thử từng giá trị của a để tìm số a thỏa mãn các điều kiện trên.
Từ các phân tích trên, ta có thể thử các giá trị a như sau:
a = 7 x 17 = 119: a chia hết cho 7 và 17, và tích 2023 x a = 2023 x 119 = 240737 chính phương. a = 2 x 7 x 17 = 238: a chia hết cho 2, 7 và 17, và tích 2023 x a = 2023 x 238 = 482074 chính phương.Vậy, số tự nhiên a nhỏ nhất thỏa mãn các điều kiện trên là a = 119.
Dài thế bạn
Có đúng ko vậy bài này là đề thi thử mà có 0,5 mà sao khó zậy bạn
bằng 119 nhưng 119 làm gì chia hết cho 2 với 3
a) Tìm số nguyên x sao cho x+2020 là số nguyên âm lớn nhất.
b) Tìm số nguyên y sao cho y-(-100) là số nguyên dương nhỏ nhất.
a: x+2020 là số nguyên âm lớn nhất
=>x+2020=-1
=>x=-2021
b: y-(-100) là số nguyên dương nhỏ nhất
=>y+100=1
=>y=-99
tìm x,y nguyên sao cho xy là số chính phương và x^2+xy+y^2 là số nguyên tố
Bài 1 : Tìm p sao cho p và p4+2 đều là số nguyên tố .
Bài 2 : TÌm các số tự nhiên n khác 0 sao cho x = 2n+2003 và y = 3n+2005 đều là số chính phương .
p=2 thì p^4+2 là hợp số
p=3 =>p^4+2=83 là số nguyên tố
với p>3 thì p có dang 3k+1 và 3k+2 thay vào chúng đều là hợp số
vậy p=3
giả sử x = 2n + 2003, y = 3n + 1005 là các số chính phương
Đặt 2n + 2003 = k2 (1) và 3n + 2005 = m2 (2) (k, m \(\in\) N)
trừ theo từng vế của (1), (2) ta có:
n + 2 = m2 - k2
khử n từ (1) và (2) => 3k2 - 2m2 = 1999 (3)
từ (1) => k là số lẻ . Đặt k = 2a + 1 ( a Z) . Khi đó : (3) <=> 3 (2a -1) 2 - 2m2 = 1999
<=> 2m2 = 12a2 + 12a - 1996 <=> m2 = 6a2 + 6a - 998 <=> m2 = 6a (a+1) - 1000 + 2 (4)
vì a(a+1) chia hết cho 2 nên 6a (a+1) chia hết cho 4, 1000 chia hết cho 4 , vì thế từ (4) => m2 chia 4 dư 2, vô lý
vậy ko tồn tại các số nguyên dương n thỏa mãn bài toán
Tìm x;y là số nguyên dương sao cho x^2 + 3y và y^2 + 3x đều là số chính phương
2) tìm các số nguyên dương x,y sao cho :
a, | 2x - 3 | = 7
b, 3/2x = 7/10 - y/5
3) tìm số nguyên tố có 2 chữ số khác nhau dạng ab sao cho ba cũng là số nguyên tố và hiệu ab - ba là số chính phương.
1.Cho A = 5 + 52 +53 +...+ 52019. Chứng tỏ rằng 4A+5 là số chính pương. Chứng tỏ rằng mọi số tự nhiên n thì 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau
2.Cho phân số P = 2019/x-2020 . Tìm số nguyên x để P có giá trị lớn nhất. Tìm giá trị lớn nhất đó
Hãy chia số 36 thành 3 số a,b,c sao cho a/b =3/4 và b/c = 4/3
Bài 1 :( 1 ) \(A=5+5^2+5^3+...+5^{2019}\Rightarrow5A=5^2+5^3+5^4+...+5^{2020}\)
\(\Rightarrow5A-A=\left(5^2+5^3+5^4+...+5^{2020}\right)-\left(5+5^2+5^3+...+5^{2019}\right)\)
\(\Rightarrow4A=5^{2020}-5\Leftrightarrow4A+5=5^{2020}-5+5=5^{2020}\Rightarrow\) là số chính phương
( 2 ) Gọi ƯCLN của \(3n+2\) và \(5n+3\) là \(d\left(d>0\right)\)
Có \(3n+2⋮d\Leftrightarrow5\left(3n+2\right)⋮d\Leftrightarrow5.3n+2.5=15n+10⋮d\left(1\right)\)
Có \(5n+3⋮d\Leftrightarrow3\left(5n+3\right)⋮d\Leftrightarrow3.5n+3.3=15n+9⋮d\left(2\right)\). Từ \(\left(1\right)\left(2\right)\)
\(\Rightarrow\left(15n+10\right)-\left(15n+9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\Rightarrowđpcm\)
Bài 2 : ( 1 ) Có \(P=\frac{2019}{x-2020}\) vì tử số dương \(\Rightarrow GTLN\) của \(P=\frac{2019}{x-2020}>0\)
Mà \(2020\) dương \(\Rightarrow x\) dương để \(TMĐK\) \(x-2020>0\)
Để \(P\) có \(GTLN\) lớn nhất thì \(x-2020\) nhỏ nhất \(\Leftrightarrow x-2020=1\Rightarrow x=2021\)
( 2 ) Có \(\frac{a}{b}=\frac{3}{4}\Leftrightarrow\frac{a}{3}=\frac{b}{4}\) ; \(\frac{b}{c}=\frac{4}{3}\Leftrightarrow\frac{b}{4}=\frac{c}{3}\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{3}\)
\(\Rightarrow a=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
\(\Rightarrow b=36\div\left(3+4+3\right)\times4=36\div10\times4=14,4\)
\(\Rightarrow c=36\div\left(3+4+3\right)\times3=36\div10\times3=10,8\)
cho mình hỏi bài 1 phần 2 chữ đpcm là gi thế bạn
Bạn giải ngĩa hết các từ viết tắt giùm mik với
Bài 1 : Tìm số nguyên tố p để p^2+41 là số nguyên tố
Bài2: Tìm số nguyên tố p để p^2+4vàp^2-4 đều là số nguyên tố
Bài3: Tổng 5 số nguyên tố là 142 . Tìm số nguyên tố nhỏ nhất trong 5 số trên
Bài4: tìm 2 số nguyên tố sao cho tổng và tích của chúng đều là số nguyên tố
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây