Tính:
a) 3\(\sqrt{a^2-4a+4}\)với a\(\ge\)2
b) 2\(\sqrt{9a^2+12a+4}\)với a < \(\frac{-2}{3}\)
1) \(\sqrt{9a^2.b^2}\) với a<0, b<0
2) \(\sqrt{3a}.\sqrt{27a}\) với a \(\ge\)0
3) \(\sqrt{3a^5}.12a\) với a>0
4) \(\sqrt{5a}.\sqrt{45a}-3a\) ( với a ≥ 0)
5) \(\sqrt{3+\sqrt{a}}\).\(\sqrt{3-\sqrt{a}}\)
6) \(\sqrt{3+\sqrt{5}}\). \(\sqrt{3\sqrt{5}}\)
\(1) \sqrt{9a^2.b^2}\)=3ab
\(2) \sqrt{3a}.\sqrt{27a}=\sqrt{3a}.3\sqrt{3a}=9a\)
\(3) \sqrt{3a^5}.12a=12\sqrt{3a^7}\)
\(4) \sqrt{5a}.\sqrt{45a}-3a=15a-3a=12a\)
\(5) \sqrt{3+\sqrt{a}}.\sqrt{3-\sqrt{a}}=\sqrt{(3+\sqrt{a}).(3-\sqrt{a})} =\sqrt{9-a} \)
\(6) \sqrt{3+\sqrt{5}}.\sqrt{3\sqrt{5}} =\sqrt{\sqrt{3\sqrt{5}}.(3+\sqrt{5})} =\sqrt{9+\sqrt{15}}\)
1) \(\sqrt{9a^2b^2}=3ab\)
2) \(\sqrt{3a}\cdot\sqrt{27a}=9a\)
4) \(\sqrt{5a}\cdot\sqrt{45a}-3a=15a-3a=12a\)
Bài 7: Rút Gọn Các Biểu Thức Sau
a. 5\(\sqrt{25^2}\) - 25x Với X<O
B \(\sqrt{49a^2}\) + 3a Với a \(\ge\) 0
C \(\sqrt{16a^4}\) + 6a\(^2\) Với a Bất Kì
d 3\(\sqrt{9a^6}\) - 6a\(^3\) với a bất kì
e 3\(\sqrt{9a^6}\) - 6a\(^3\) Với a\(\ge\) 0
f \(\sqrt{16a^{10}}\) + 6a\(^5\) với a \(\le0\)
b: B=căn 49a^2+3a
=|7a|+3a
=7a+3a(a>=0)
=10a
c: C=căn16a^4+6a^2
=4a^2+6a^2
=10a^2
d: \(D=3\cdot3\cdot\sqrt{a^6}-6a^3=6\cdot\left|a^3\right|-6a^3\)
TH1: a>=0
D=6a^3-6a^3=0
TH2: a<0
D=-6a^3-6a^3=-12a^3
e: \(E=3\sqrt{9a^6}-6a^3\)
\(=3\cdot\sqrt{\left(3a^3\right)^2}-6a^3\)
=3*3a^3-6a^3(a>=0)
=3a^3
f: \(F=\sqrt{16a^{10}}+6a^5\)
\(=\sqrt{\left(4a^5\right)^2}+6a^5\)
=-4a^5+6a^5(a<=0)
=2a^5
rút gọn rồi tính: C=\(\sqrt{-9a^2-\sqrt{9+12a+4a^2}}\)
với a=-9
Đẫ bảo là a = -9 thì biểu thức không tính đc mở máy tính ra BẤm thử mà xem
1.)\(\sqrt{11+4\sqrt{6}}\)
2.)\(\sqrt{7-4\sqrt{3}}-\sqrt{8+2\sqrt{15}}\)
3.)\(\sqrt{4-2\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)
4.)\(\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
5.)\(\sqrt{4a^2-12a+9}vớia\ge\dfrac{3}{2}\)
6.)\(\sqrt{a^2-6a+9}+\sqrt{9+64a^2-48a}với\dfrac{3}{8}< a< 3\)
tách 11 ra thành \(\sqrt{3}\) mũ 2 + căn 8 mũ 2
áp dụng hẳng đẳng thức đáng nhớ A^2+2AB +B^2=(A+B)^2
vào \(\sqrt{11+4\sqrt{6}}\)
.Bản thử đi nhé kết quả của mình là \(\sqrt{3}\)+\(\sqrt{8}\)
Vì ko gõ đc căn nên mình ko giải hẳn hoi ra đc .Bạn thông cảm ha.
Chúc bn hok tốt!
Nguyễn Duy Phương ngại viếết lắm căn quá
bạn có quyển nâng cao và phát triểển toán 9 ko Tập 1 ý .Trong đó có đầy đủ.Còn không có thì bạn cứ làm tương tự câu a.
Thooy mình làm cho câu b nữa nhé !
B=\(\sqrt{7-4\sqrt{3}}\)-\(\sqrt{8+2\sqrt{15}}\)
=\(\sqrt{\sqrt{4}-2.\sqrt{4.3}+\sqrt{3}}\)+\(\sqrt{\sqrt{3}+2\sqrt{3.5}+\sqrt{5}}\)
=\(\sqrt{\left(\sqrt{4}-\sqrt{3}\right)}\)+\(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)}\)
=\(\sqrt{4}\)-\(\sqrt{3}\)+\(\sqrt{5}\)+\(\sqrt{3}\)
=\(\sqrt{4}\)+\(\sqrt{5}\)
ok NHA !cHO CÁI TIK NỮA NHA!
Rút gọn biểu thức:
a, \(\frac{2}{a}\sqrt{\frac{16a^2}{9}}\) với a < 0
b, \(\frac{3}{a-1}\sqrt{\frac{4a^2-8a+4}{25}}\) với a > 1
c, \(\frac{3\sqrt{18a^2b^4}}{\sqrt{2a^2b^2}}\) với a ≠ b
d, \(\left(1+\frac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\frac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) với a ≠ 1, a ≥ 0
a/ \(\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{-8a}{3a}=-\frac{8}{3}\)
b/ \(\frac{3}{a-1}\sqrt{\frac{4\left(a-1\right)^2}{25}}=\frac{3}{\left(a-1\right)}.\frac{2\left|a-1\right|}{5}=\frac{6\left(a-1\right)}{5\left(a-1\right)}=\frac{6}{5}\)
c/ \(\frac{3\sqrt{9a^2b^4}}{\sqrt{a^2b^2}}=\frac{9.\left|a\right|.b^2}{\left|a\right|\left|b\right|}=9\left|b\right|\)
d/ \(\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
a/ \(=\frac{2}{a}.\frac{4\left|a\right|}{3}=\frac{2}{a}.\frac{-4a}{3}=\frac{-8}{3}\)
b/ \(=\frac{3}{a-1}.\frac{\left|2a-2\right|}{5}=\frac{3}{a-1}.\frac{2\left(a-1\right)}{5}=\frac{6}{5}\)
c/ \(=\sqrt{\frac{162a^2b^4}{2a^2b^2}}=\sqrt{81b^2}=9\left|b\right|\)
d/ \(=\left(1+\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}\right)\left(1-\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)=1-a\)
Cho \(A=\sqrt{9a^4-6a^2+1}-\sqrt{4a^4+12a^2+9}\)
a. Rút gọn A
b. Tính A khi a=\(\sqrt{5}\)
Rút gọn các biểu thức sau
a) \(\sqrt{25a^2}+3a\) với a ≥ 0
b) \(\sqrt{9a^4}+3a^2\)
c) \(5\sqrt{4a^6}-3a^3\) với a < 0
a) \(=5\left|a\right|+3a=5a+3a=8a\)
b) \(=3\left|a^2\right|+3a^2=3a^2+3a^2=6a^2\)
c) \(=5.2\left|a^3\right|-3a^3=-10a^3-3a^3=-13a^3\)
Tính
a,\(\sqrt{6a^2-2a\sqrt{2}+1}\) tại a =\(\sqrt{\frac{2}{3}}\)+ \(\sqrt{\frac{3}{2}}\)
b,\(\sqrt{10a^2-12a\sqrt{10}+36}\)tại a = \(\sqrt{\frac{2}{5}}+\sqrt{\frac{5}{2}}\)
c,\(\sqrt{9a^2-12a+4}-9a+1\) tại a = \(\frac{1}{3}\)
d, \(\sqrt{1-10a+25a^2}-4a\)tại a = -5
BÀI 1. Rút gọn biểu thức sau:
1)\(\sqrt{8+2\sqrt{15}}-\sqrt{8-2\sqrt{15}}\)
2)\(\sqrt{2a.18a.b^2}\) với a; b ≥ 0
3) \(\sqrt{\frac{4a^2}{9a^3}}\) với a > 0
4)\(\frac{b+\sqrt{b}}{\sqrt{b}+1}\) với b ≥ 0
5)\(\frac{\sqrt{a}-1}{a-1}\) với a ≥ 0, a ≠ 1
6) \(\frac{a-2\sqrt{a}+1}{a-1}\) với a ≥ 0, a ≠ 1
7) \(\frac{\sqrt{a}+1}{a\sqrt{a}+1}\)