tìm x,y biết : 3*y^2 + x^2 + 2*x*y + 2*x + 6y +3 = 0. Làm đc khen giỏi thank trc
1tìm y,x biết
a) 8xy-6y-4x+3=5
b)5xy-2y-20x=-25
2 tìm số tự nhiên x,y sao cho
a) (2x+1).(y-3)=10
b)x-2=y.(x+2)
c)x+6=y.(x-1)
các bạn giúp mình làm bài này nhanh nha thank you
cho x,y thỏa mãn
(x-y)(x^2+y^2+xy+3)=3(x^2+y^2)+2.
Tìm GTNN của P=x^2+y^2+2xy-2x-6y+2020
làm nhanh cho mình đc ko ạ.Mình sắp đi học rồi
Bài 1 Cho f(x) = ( a + 2 ) . x + 2a + 5. Tìm a biết f(-3) = 7
Bài 2 : Tìm x, y biết ( x + y + 1 )2018 + | y - 3 |2019 = 0
Ai làm đc cả 2 câu 3 tick
câu 1:
f(-3) = 7
=> f(-3) = (a + 2) . (-3) + 2a + 5 = 7
=> -3a - 6 + 2a + 5 = 7
=> -1 - a = 7
=> -1 - 7 = a
=> a = -8
2/Hướng dẫn:
Đánh giá mỗi cái biểu thức có số mũ chẵn hay có chứa dấu giá trị tuyệt đối \(\ge0\) là được.
Rồi từ đó giải dấu bằng ra là mỗi cái biểu thức đó = 0.Rồi tìm y trước.Thay vào biểu thức kia tính x.
\(\left(x+y+1\right)^{2018}+\left|y-3\right|^{2019}=0\)
Vì \(\left(x+y+1\right)^{2018}\)và \(\left|y-3\right|^{2019}\)\(\ge0\)
(x + y + 1)^2018 có mũ là số chẵn nên sẽ lớn hơn hoặc bằng 0, |y - 3|^2019 có dấu giá trị tuyệt đối nên cũng lớn hơn hoặc bằng 0)
nên (x + y + 1) ^ 2018 và |y - 3|^2019 ko thể khác dấu
mà chúng cộng lại = 0
nên \(\left(x+y+1\right)^{2018}=0\)và \(\left|y-3\right|^{2019}=0\)
hay x + y + 1 = 0 và y - 3 = 0
hay x + y = -1 và y = 3
=> x = -1 - y = -1 - 3 = -4
Vậy x = -4 và y = 3
Tìm x,y,z khác 0,biết x/3=y/2=z/4 và xz=6y
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\z=4k\end{cases}}\)
Khi đó xz = 6y
<=> 3k.4k = 6.2k
= 12k2 = 12k
=> 12k2 - 12k = 0
=> 12k(k - 1) = 0
=> k(k - 1) = 0
=> \(\orbr{\begin{cases}k=0\\k=1\end{cases}}\)
Khi k = 0 => x = y = z = 0
Khi k = 1 => x = 3 ; y = 2 ; z = 4
Đặt \(\frac{x}{3}=\frac{y}{2}=\frac{z}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=2k\\z=4k\end{cases}}\)
=> xz = 6y ⇔ 3k.4k = 6.2k
⇔ 12k2 - 12k = 0
⇔ 12k( k - 1 ) = 0
⇔ 12k = 0 hoặc k - 1 = 0
⇔ k = 0 hoặc k = 1
Với k = 0 => x = y = z = 0 ( loại )
Với k = 1 => x = 3 ; y = 2 ; z = 4 ( thỏa mãn )
Vậy x = 3 ; y = 2 ; z = 4
Tìm x y z biết
a) (x^2+1)^2+(y^2-4)^2=0
b) (x^2-9^2)^2+(y^2-16)^4=0
c) (x-2)^2+(y-3)^4+(z-4)^6=0
d) (1/x-2)^2+(3/y-5)^2+(x+5y-3z)^2=0
Giúp mình với, chiều mai mình phải nộp rồi. Làm đc bao nhiêu mình tick cho bấy nhiêu
cho x+y=11/3 Tính x^3+y^3+11xy
tìm x,y biết 4x^2-12x+y^2-4y+13=0
cái này hơi quá sức với mình mình chỉ làm đc phân nữa nên thắc mắc đáp án
Tìm x biết:
6y ( y-1)= y-1
2 (y+5) - y^2 - 5y=0
y^3 + y=0
a)\(6y\left(y-1\right)=y-1\)
\(6y=\frac{y-1}{y-1}\)
\(6y=1\)
\(y=\frac{1}{6}\)
b) \(2\left(y+5\right)-y^2-5y=0\)
\(2y+10-y^2-5y=0\)
\(y\left(2-y-5\right)+10=0\)
\(y\left(-3-y\right)=-10\)
\(-3y-2y=-10\)
\(-5y=-10\)
\(y=2\)
c) \(y^3+y=0\)
\(y\left(y^2+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}y=0\\y^2+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y^2=-1\left(vl\right)\end{cases}}}\)
hok tốt!!
Tìm x,y thỏa mãn x^2 +5y^2 -4x -4xy +6y +5 = 0. Tính P=(x-3)^2023 + (y-2)^2023 +(x+y-5)^2023
Ta có:
\(x^2+5y^2-4x-4xy+6y+5=0\\\Rightarrow[(x^2-4xy+4y^2)-(4x-8y)+4]+(y^2-2y+1)=0\\\Rightarrow[(x-2y)^2-4(x-2y)+4]+(y-1)^2=0\\\Rightarrow(x-2y-2)^2+(y-1)^2=0\)
Ta thấy: \(\left\{{}\begin{matrix}\left(x-2y-2\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)
Mà: \(\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
nên: \(\left\{{}\begin{matrix}x-2y-2=0\\y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2y+2\\y=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot1+2=4\\y=1\end{matrix}\right.\)
Thay \(x=4;y=1\) vào \(P\), ta được:
\(P=\left(4-3\right)^{2023}+\left(1-2\right)^{2023}+\left(4+1-5\right)^{2023}\)
\(=1^{2023}+\left(-1\right)^{2023}+0^{2023}\)
\(=1-1=0\)
Vậy \(P=0\) khi \(x=4;y=1\).
10 Phân tích các đa thức sau thành nhân tử:
a) 5xy(x-y)-2x+2y ; b) 6x-2y-x(y-3x)
c) x^2+4x-xy-4y ; d) 3xy+2z-6y-xz
11 Tìm x, biết: a) 4-9x^2=0 ; b) x^2+x+1/4=0 ; c) 2x(x-3)+(x-3)=0
d) 3x(x-4)-x+4=0 ; e) x^3-1/9x=0 ; f) (3x-y)^2-(x-y)^2=0
a) 5xy ( x - y ) - 2x + 2y
= 5xy ( x - y ) - 2 ( x - y )
= ( x - y ) ( 5xy - 2 )
b) 6x-2y-x(y-3x)
= 2 ( y - 3x ) - x ( y - 3x )
= ( y - 3x ( ( 2 - x )
c) x2 + 4x - xy-4y
= x ( x + 4 ) - y ( x + 4 )
( x + 4 ) ( x - y )
d) 3xy + 2z - 6y - xz
= ( 3xy - 6y ) + ( 2z - xz )
= 3y ( x - 2 ) + z ( x - 2 )
= ( x - 2 ) ( 3y + z )
a,5xy(x-y)-2x+2y=5xy(x-y)-2(x-y)=(x-y)(5xy-2)
b,6x-2y-x(y-3x)=-2(y-3x)-x(y-3x)=(y-3x)(-2-x)
c,x^2+4x-xy-4y=x(x+4)-y(x+4)=(x+4)(x-y)
d,3xy+2z-6y-xz=(3xy-6y)+(2z-xz)=3y(x-2)+z(2-x)=3y(x-2)-z(x-2)=(x-2)(3y-z)
11)
a,4-9x^2=0
(2-3x)(2+3x)=0
2-3x=0=>x=2/3 hoặc 2+3x=0=>x=-2/3
b,x^2 +x+1/4=0
(x+1/2)^2 =0
x+1/2=0
x=-1/2
c,2x(x-3)+(x-3)=0
(x-3)(2x+1)=0
x-3=0=>x=3 hoặc 2x+1=0=>x=-1/2
d,3x(x-4)-x+4=0
3x(x-4)-(x-4)=0
(x-4)(3x-1)=0
x-4=0=>x=4 hoặc 3x-1=0=>x=1/3
e,x^3-1/9x=0
x(x^2-1/9)=0
x(x+1/3)(x-1/3)=0
x=0 hoặc x+1/3=0=>x=-1/3 hoặc x-1/3=0=>x=1/3
f,(3x-y)^2-(x-y)^2 =0
(3x-y-x+y)(3x-y+x-y)=0
2x(4x-2y)=0
4x(2x-y)=0
x=0hoặc 2x-y=0=>x=y/2