tìm giá trị nhỏ nhất của biểu thức 2x^2+3x+y^2+y+15
Tìm giá trị( LN ) giá trị nhỏ nhất ( gtnn) của các biểu thức sau:
A) A= x^2+3x+1
B) B= 2x^2+6x+y^2+2xy+12
C) C= 2x-x^2
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
Tìm giá trị nhỏ nhất của biểu thức:
a) 3x^2-9x+5
b)x^2+y^2+x-y-1
c) 2x^2+2x+1
a) \(3x^2-9x+5=3\left(x-\frac{3}{2}\right)^2-\frac{7}{4}\ge-\frac{7}{4}\)
Dấu "=" xảy ra khi x = 3/2
Vậy BT đạt giá trị nhỏ nhất bằng -7/4 khi x = 3/2
b/ \(x^2+y^2+x-y-1=\left(x^2+x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)-\frac{3}{2}=\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
Dấu "=" xảy ra khi \(\begin{cases}x=-\frac{1}{2}\\y=\frac{1}{2}\end{cases}\)
Vậy BT đạt giá trị nhỏ nhất bằng -3/2 khi (x;y) = (-1/2;1/2)
c/ \(2x^2+2x+1=2\left(x+\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi x = -1/2
Vậy BT đạt giá trị nhỏ nhất bằng 1/2 khi x = -1/2
Tìm giá trị nhỏ nhất của biểu thức :
A= (x+10)^2 + (y-10)^2 = 2010
B=(3x-y)^2 + (2x -1)=7
a) Tìm giác trị nhỏ nhất của biểu thức A=\(3x^2+y^2+4x-y\)
b) Cho các số thực x,y,z thỏa mãn 2x+2y+z=4 .Tìm giá trị lớn nhất của biểu thức B=2xy+yz+zx
mấy bạn chuyên toán giải giùm mk bài b) giùm ạ, mk đaq rất cần
tìm giá trị lớn nhất, giá trị nhỏ nhất các biểu thức sau A= x^2-4x+8
B= 4x^2 -12x+11
C= 3x^2+6x-5
D= -x^2 +2x -5
E= -4x^2 +6x-5
F= -2x^2+x-7
G= x2+5y^2-4xy+y+1
H=-x^2-y^2+2x-4y+11
\(A=\left(x^2-4x+4\right)+4=\left(x-2\right)^2+4\ge4\)
\(minA=4\Leftrightarrow x=2\)
\(B=\left(4x^2-12x+9\right)+2=\left(2x-3\right)^2+2\ge2\)
\(minB=2\Leftrightarrow x=\dfrac{3}{2}\)
\(C=3\left(x^2+2x+1\right)-8=3\left(x+1\right)^2-8\ge-8\)
\(minC=-8\Leftrightarrow x=-1\)
\(D=-\left(x^2-2x+1\right)-4=-\left(x-1\right)^2-4\le-4\)
\(maxD=-4\Leftrightarrow x=1\)
\(E=-\left(4x^2-6x+\dfrac{9}{4}\right)-\dfrac{11}{4}=-\left(2x-\dfrac{3}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
\(maxA=-\dfrac{11}{4}\Leftrightarrow x=\dfrac{3}{4}\)
\(F=-2\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)-\dfrac{55}{8}=-2\left(x-\dfrac{1}{4}\right)^2-\dfrac{55}{8}\le-\dfrac{55}{8}\)
\(maxF=-\dfrac{55}{8}\Leftrightarrow x=\dfrac{1}{4}\)
\(G=\left(x^2-4xy+4y^2\right)+\left(y^2+y+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-2y\right)^2+\left(y+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(maxG=\dfrac{3}{4}\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-\dfrac{1}{2}\end{matrix}\right.\)
\(H=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)+16=-\left(x-1\right)^2-\left(y+2\right)^2+16\le16\)
\(maxH=16\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a) Tìm giá trị nhỏ nhất của biểu thức: A = 4x2 - 12x + 100
b) Tìm giá trị lớn nhất của biểu thức: B = -x2 - x + 1
c) Tìm giá trị nhỏ nhất của biểu thức: C = 2x2 + 2xy + y2 - 2x + 2y + 2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a) tìm giá trị nhỏ nhất của biểu thức: A=\(x^2+xy+y^2-3x-3y+2004\)
b) TÌm giá trị nhỏ nhất của biểu thức: A=\(2x^2+9y^2-6xy-6x-12y+2006\)
c) Tìm min của y=\(\frac{x^4+x^2+5}{x^4+2x^2+1}\)
Tìm giá trị nhỏ nhất của biểu thức: A=(3x-15)2 +|-8-y|+2020
nhanh nhanh nha các bn
Ta có: \(\hept{\begin{cases}\left(3x-15\right)^2\ge0\forall x\\|-8-y|\ge0\forall x\end{cases}}\)
\(\Leftrightarrow\left(3x-15\right)^2+|-8-y|\ge0\forall x\)
\(\Leftrightarrow\left(3x-15\right)^2+|-8-y|+2020\ge2020\forall x\)
\(\Leftrightarrow A\ge2020\)
Dấu "=" xảy ra:
\(\Leftrightarrow\hept{\begin{cases}3x-15=0\\-8-y=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}}\)
Vậy \(A_{Min}=2020\Leftrightarrow\hept{\begin{cases}x=5\\y=-8\end{cases}}\)
Tìm giá trị nhỏ nhất của biểu thức sau:
a) A= | x + 3 | + 15
b) B = | 2x +1| - 2015
c) C = | 3x - 4| + |y-1| + 17
a)Ta có: |x+3|>=0
=>|x+3|+15>=15 hay A>=15
Nên GTNN của A là 15 khi:
x+3=0
x=0-3
x=-3
b)B=|2x+1|-2015
Ta có: |2x+1|>=0
=>|2x+1|-2015>=-2015 hay B>=-2015
Nên GTNN của B là -2015 khi:
2x+1=0
2x=0-1
x=-1/2
c)C=|3x-4|+|y-1|+17
Ta có: |3x-4|>=0
|y-1|>=0
=>|3x-4|+|y-1|+17>=17 hay C>=17
Nên GTNN của C là 17 khi:
3x-4=0 hay y-1=0
3x=0+4 y=0+1
x=4/3 y=1