Tính
1/1.3+1/3.5+1/5.7+......+1/253.255+ 1/255.257
a) 1/1.3+1/3.5+1/5.7
b) 1/1.3+1/3.5+1/5.7+...+1/2007.2009+1/2009.2011
a)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{7}\right)\)
\(=\frac{1}{2}.\frac{6}{7}\)
\(=\frac{3}{7}\)
b)\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2007.2009}+\frac{1}{2009.2011}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2009}-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2011}\right)\)
\(=\frac{1}{2}.\frac{2010}{2011}\)
\(=\frac{1005}{2011}\)
Tìm tổng :
\(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right).\left(2n+1\right)}+...+\dfrac{1}{255.257}\)
Ta có:\(\dfrac{1}{2n-1}-\dfrac{1}{2n+1}=\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}\)
Ta phân tích tổng thành:
\(\dfrac{1}{2}.\left[\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{\left(2n-1\right).\left(2n+1\right)}+...+\dfrac{2}{255.257}\right]\)
\(=\dfrac{1}{2}.\left[\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{255}-\dfrac{1}{257}\right]\)
\(=\dfrac{1}{2}.\left[1-\dfrac{1}{257}\right]=\dfrac{128}{257}\)
1/1.3+1/3.5+1/5.7+...+1/2009.2011
\(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+...+\dfrac{1}{2009\cdot2011}\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+...+\dfrac{2}{2009\cdot2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2009}-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2011}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{2010}{2011}=\dfrac{1005}{2011}\)
= 1/2 . (1/1 - 1/3 + 1/3 - 1/5 +... + 1/2009 - 1/2011)
= 1/2 . (1/1 - 1/2011)
= 1/2 . 2010 / 2011
= 1005/2011
A = 1/1.3 - 1/3.5 - 1/5.7 - ... - 1/99.101
\(=\dfrac{1}{3}-\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{1}{3}-\dfrac{1}{2}\cdot\dfrac{98}{303}=\dfrac{1}{3}-\dfrac{49}{303}=\dfrac{101-49}{303}=\dfrac{52}{303}\)
S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202
S= 1/1.3 + 1/3.5 + 1/5.7 +................+ 1/200.202
=>S=1/2.(2/1.3+2/3.5+2/5.7+...+2/200.202)
=>S=1/2.(3-1/1.3+5-3/3.5+...+202-200/200.202)
=>S=1/2.(1-1/3+1/3-1/5+...+1/200-1/202)
=>S=1/2.(1-1/202)
=>S=1/2.201/202
=>S=201/404
Vậy S=201/404
Tính 1/1.3+1/3.5+1/5.7+.......1/2017.2019
=1/2(2/1*3+2/3*5+...+2/2017*2019)
=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)
=1/2*2018/2019
=1009/2019
=1/2(2/1x3+2/3x5+...+2/2017x2019)
=1/2(1-1/3+1/3-1/5+...+1/2017-1/2019)
=1/2x2018/2019
=1008/2019
1/1.3+1/3.5+1/5.7+....................................+1/97.99
1/1x3 + 1/3x5 + 1/5x7 + ...............................+ 1/97x99
=1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 +.............................+ 1/97-1/99
=1-1/99
=98/99
1/1.3+1/3.5+1/5.7+.........+1/99.101
Đặt A=1/1*3+1/3*5+..+1/99*101
A=2/2*(1/1*3+1/3*5+...+1/99*101)
A=1/2*(2/1*3+2/3*5+..+2/99*101)
A=1/2*(1/1-1/3+1/3-1/5+...+1/99-1/100)
A=1/2*(1/1-1/100)
A=1/2*99/100
A=99/200
50/101 nha
Ai chưa có người yêu thì k và kết bạn với mình nhé
\(\frac{1}{1\cdot3}\)+ ... +\(\frac{1}{99\cdot101}\)
2 lần cái này bằng \(\frac{2}{1\cdot3}\)+\(\frac{2}{99\cdot101}\)
= 1/1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/100
=1-1/100
=> cái này bằng 1-1/100 chia 2 = 99/200
Nên nhớ, tao đang học lớp 6 đấy nhé.
1/1.3+1/3.5+1/5.7+....1/2003.2005
\(=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{2003.2005}\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2003}-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{2005}\right)\)
\(=\frac{1}{2}.\frac{2004}{2005}\)
\(=\frac{1002}{2005}\)