ai giải giùm mình bài này mình hậu tạ
cho hbh ABCD, I thuộc AC, DI cắt AB tại M , BC tại N . CMR:
1)AM/AB=DM/DN=CB/CN
2)ID2=IM . IN
ai giải đc mình tick đúng cho
cho hbh ABCD trên đường chéo AC lấy điểm I ,tia DI cắt đường thẳng AB tại M , cắt đường thẳng BC tại N . CMR:
a,\(\frac{AM}{AB}\) =\(\frac{DM}{DN}\) =\(\frac{CB}{CN}\)
b,ID2 = IM nhân IN
hình mik ko vẽ đc xl!!!(GT+KL cx vậy)
a)Ta có AD//BN(NϵBC) => \(\frac{AM}{AB}=\frac{DM}{DN}\)(dl ta-lét) \(_1\)
Lại có BM//DC(MϵAB) => \(\frac{CB}{CN}=\frac{DM}{DN}\)(dl ta-lét) \(_2\)
từ 1 và 2 => \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\left(đpcm\right)\)
b) ta có: AM//DC(MϵAB) => \(\frac{DI}{IM}=\frac{BC}{AM}=\frac{AB}{AM}\)(hệ quả ; BC=AB)
CMTT => \(\frac{IN}{DI}=\frac{NC}{DA}=\frac{NC}{CB}\)
VÌ \(\frac{NC}{CB}=\frac{AB}{AM}\left(cmt\right)\)
\(\Rightarrow\frac{IN}{ID}=\frac{ID}{IM}\Leftrightarrow ID^2=IN\cdot IM\left(đpcm\right)\)
Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm I. Tia DI cắt đường thẳng AB tại M, cắt đường thẳng BC tại N. Chứng minh rằng: a) AM/AB = DM/DN = CB/CN. b) ID^2 = IM*IN
Cho hình bình hành ABCD. Trên đường chéo AC lấy điểm I. Tia DI cắt đường thẳng AB tại M, cắt đường thẳng BC tại N. Chứng minh rằng: a) AM/AB = DM/DN = CB/CN. b) ID^2 = IM*IN
giải giùm mình bày này nhé :
cho hình vuông abcd m n là trung điểm của bc ĐC chứng minh AM vuông góc với DN
ai làm đc mình tick đúng cho nhé
Mấy bạn ơi giải giùm mình bài này:
Cho tam giác ABCcó các cạnh AB=24cm,AC=28cm.Tia phân giá của góc A cắt cạnh BC tại D.Gọi M,N theo thứ là hình chiếu của B và C trên đường thẳng AD
a)Tính tỉ số BM/CN
b)Chứng minh rằng AM/AN=DM/DN
Cho hình bình hành ABCD trên đường chéo AC lấy I tia DI cắt đường thẳng AB tại M, BC tại N. CM: a, AM/AB=DM/DN=CB/CN
b, ID2=IM.IN
a)
Áp dụng Ta-lét vào tam giác ADM và MNB,vì AD//BN,ta có: \(\frac{AM}{MB}=\frac{DM}{DN}\)(1)
Áp dụng Ta-lét vào tam giác DNC ,vì MB//DC, ta có : \(\frac{DM}{DN}=\frac{CB}{CN}\)(2)
Từ (1),(2), ta có: \(\frac{AM}{MB}=\frac{DM}{DN}=\frac{CB}{CN}\)(đpcm)
b)
Áp dụng Ta-lét vào tam giác AMI và IDC,vì AM//DC ,ta có: \(\frac{DI}{IM}=\frac{IC}{AI}\)(1)
Áp dụng Ta-lét vào tam giác IAD và INC , vì AD//NC , ta có :\(\frac{IN}{ID}=\frac{IC}{AI}\)(2)
Từ (1),(2); ta có : \(\frac{ID}{IM}=\frac{IN}{ID}\)\(\Rightarrow\)IM.IN=ID2.
giúp mình câu cuối
cho hình bình hành ABCD(AB>BC). Trên cạch AB lấy điểm E đg thẳng DE cắt cạnh CB kéo dai tại N và cắt AC tại M
a) Δ AED ∼ΔBEN
b) MA.MD=ME.MC
c) c/m:
\(\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)
a) Xét \(\Delta AED\) và \(\Delta BEN\)
Ta có : \(\widehat{AED}=\widehat{BEN}\) ( đối đỉnh )
\(\widehat{ADE}=\widehat{BNE}\) ( Do \(\text{AD//BC}\) )
\(\Rightarrow\Delta AED\sim\Delta BEN\)
b) Ta có : \(\text{AE//DC}\) ( Do \(ABCD\) là hình bình hành )
\(\Rightarrow\dfrac{AM}{MC}=\dfrac{EM}{MD}\) ( theo định lí Ta-lét )
\(\Rightarrow MA.DM=MC.ME\)
c) Ta có :
\(\text{AE//DC}\)\(\Rightarrow\dfrac{DM}{DC}=\dfrac{CM}{AC}\)( theo định lí Ta-lét )
\(\text{AD//BC}\) \(\Rightarrow\dfrac{AM}{AC}=\dfrac{DM}{DN}\)( theo định lí Ta-lét )
\(\Rightarrow\dfrac{DM}{DE}+\dfrac{DM}{DN}=\dfrac{CM}{AC}+\dfrac{AM}{AC}=1\)
\(\Rightarrow\dfrac{1}{DE}+\dfrac{1}{DN}=\dfrac{1}{DM}\)
Cho hbh ABCD ,trên đg chéo AC lấy I.Tia DI cắt đg thẳng AB tại M và cắt đg thẳng BC tại N.CMR:
a)\(\dfrac{MN}{ND}=\dfrac{BN}{NC}\)
b)\(\dfrac{AM}{AB}=\dfrac{DM}{DN}=\dfrac{CB}{CN}\)
c)\(ID^2\)=IM.IN
Cho hình bình hành ABCD, trên đường chéo AC lấy I. Tia DI cắt đường thẳng AB tại M, cắt đường thẳng BC tại N. Chứng minh:
a) \(\frac{AM}{AB}=\frac{DM}{DN}=\frac{CB}{CN}\)
b) \(ID^2=IM.IN\)