chứng minh rằng :a^3-b^3+ab(a-b)=(a-b)(a+b)^2
a. Cho a^2 + b^2 + c^2 + 3= 2(a + b + c). Chứng minh rằng: a=b=c=1
b. Cho (a + b + c)^2 = 3(ab + ac + bc). Chứng minh rằng: a=b=c
c. Cho a^2 + b^2 + c^2 = ab + ac +bc. Chứng minh rằng: a=b=c
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
a) Ta có : \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2\ge0,\left(b-1\right)^2\ge0,\left(c-1\right)^2\ge0\) nên pt trên tương đương với \(\begin{cases}\left(a-1\right)^2=0\\\left(b-1\right)^2=0\\\left(c-1\right)^2=0\end{cases}\) \(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\) (1)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2ab+2bc+2ac\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Mà \(\left(a-b\right)^2\ge0,\left(b-c\right)^2\ge0,\left(c-a\right)^2\ge0\)
\(\Rightarrow\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\) \(\Rightarrow a=b=c\)
c) Giải tương tự câu b) , bắt đầu từ (1)
chứng minh rằng: A) ( a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2). B) a3+b3= (a+b)[(a-b)2+ab]
b, ta có a3+ b3 = (a+b)(a2-ab +b2)
= (a+b)(a2 -ab +b2 -ab +ab)
= (a+b) ( a2-2ab +b +ab)
=(a+b) [ (a2-b2) +ab ]
vậy ...........................
đề c/ m : ( a+b)(a2-ab +b2) +(a-b)(a2+ab+b2 ) =2a3
(a+ b)(a2 -ab +b2) + (a-b)(a2+ab +b2)
= a3+b3+a3-b3(hdt)
= 2a3
chúc bạn học tốt
chứng minh rằng (a+b)(a^2-ab+b^2)+(a-b)(a^2+ab+b^2)=2a^3
VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM
a) chứng minh rằng a2 + ab + b2 >= 0 với mọi số thực a , b ; b) chứng minh rằng với 2 số thực a , b tùy ý , ta có a4 + b4 >= a3b + ab3
a)\(a^2+ab+b^2=a^2+\dfrac{2ab}{2}+\left(\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\)
\(=\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\ge0\forall a,b\)
b)\(a^4+b^4\ge a^3b+ab^3\)
\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a^3-b^3\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\forall a,b\)
Chứng minh rằng
a^3+b^3=(a+b)[(a-b)^2 -ab]
Chắc bạn viết sai đề bên kia phải là(a+b)[(a-b)2-ab] mới cm được
Ta có vế trái a3+b3=(a+b)(a2-ab+b2) (1)
Vế phải (a+b)[(a-b)2+ab]=(a+b)(a2-2ab+b2+ab)=(a+b)(a2-ab+b2) (2)
Từ (1)(2) suy ra đpcm
Chứng minh đẳng thức:
a) Cho \(2\left(a^2+b^2\right)=\left(a-b\right)^2.\) Chứng minh rằng a; b là 2 số đối nhau.
b) Cho \(a^2+b^2+c^2+3=2\left(a+b+c.\right)\) Chứng minh rằng a = b = c = 1
c) Cho \(\left(a+b+c\right)^2=3\left(ab+ac+bc\right).\) Chứng minh rằng a = b = c
a. \(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Leftrightarrow2a^2+2b^2=a^2+b^2-2ab\)
\(\Leftrightarrow a^2+b^2=-2ab\)
\(\Leftrightarrow a^2+2ab+b^2=0\)
\(\Leftrightarrow\left(a+b\right)^2=0\)
\(\Leftrightarrow a+b=0\Leftrightarrow a=-b\) (đpcm)
b. \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2+3-2a-2b-2c=0\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Vì \(\left(a-1\right)^2;\left(b-1\right)^2;\left(c-1\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2=\left(b-1\right)^2=\left(c-1\right)^2=0\)
\(\Leftrightarrow a-1=b-1=c-1=0\Leftrightarrow a=b=c=1\)
c. \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ca\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tương tự câu b ta có a = b = c
1/ Cho a,b>0 , thỏa mãn ab = 1. Chứng minh rằng:
\(\dfrac{a}{\sqrt{b+2}}+\dfrac{b}{\sqrt{a+2}}+\dfrac{1}{\sqrt{a+b+ab}}\ge\sqrt{3}\)
2/ Cho a>0. Chứng minh rằng:
a+\(\dfrac{1}{a}\ge\sqrt{\dfrac{1}{a^2+1}}+\sqrt{1+\dfrac{1}{a^2+1}}\)
3/ Cho a, b>0. Chứng minh rằng:
2(a+b)\(\le1+\sqrt{1+4\left(a^3+b^3\right)}\)
a, chứng minh rằng : a2 + b2 + 1 >- ab+a+b
b, cho a+b+c=0. chứng minh a3+b3 +c3=3abc
a) Ta có:
(a + b)2 >= 0 => a2 + b2 >= -2ab
(a - 1)2 >= 0 => a2 + 1 >= 2a
(b - 1)2 >= 0 => b2 + 1 >= 2b
Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b
Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:
a2 + b2 + 1 > -ab + a + b .đpcm.
b) a + b + c = 0 => a + b = -c => (a + b)3 = -c3 => a3 + 3a2b +3 ab2 + b3 = -c3
=> a3 + b3 + c3 = -3ab(a + b) (*)
Mà a + b + c = 0 => a + b = -c
=> (*) <=> a3 + b3 + c3 = 3abc .đpcm.
Chứng minh rằng với mọi a,b thuộc R , ab=1 thì a^5 + b^5= (a^3+ b^3)(a^2+ b^2)-( a+ b)
Biến đổi vế phải:
(a3+b3)(a2+b2)-(a+b)=(a5+b5)+(a3b2+a2b3)-(a+b)=a5+b5+a2b2(a+b)-(a+b)
Thay ab=1 vào ta được:
a5+b5+(a+b)-(a+b)=a5+b5
Sau khi biến đổi ta thấy vế phải bằng vế trái.Vậy đẳng thức đã được chứng minh