rút gọn phân thức
\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
Rút gọn phân thức a^3-3a+2/2a^3-7a^2+8a-3
\(\dfrac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
\(=\dfrac{a^3-a-2a+2}{2a^3-2a^2-5a^2+5a+3a-3}\)
\(=\dfrac{a\left(a-1\right)\left(a+1\right)-2\left(a-1\right)}{2a^2\left(a-1\right)-5a\left(a-1\right)+3\left(a-1\right)}\)
\(=\dfrac{\left(a-1\right)\left(a^2+a-2\right)}{\left(a-1\right)\left(2a^2-5a+3\right)}\)
\(=\dfrac{\left(a+2\right)\left(a-1\right)}{\left(a-1\right)\left(2a-3\right)}\)
\(=\dfrac{a+2}{2a-3}\)
Rút gọn các phân thức sau
a) N = \(\frac{a^4-5a^2+a}{a^4-a^2+4a-4}\)
b) M =\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c) P = \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
c)\(P=\)\(\frac{\left(a-b\right)^2-c^2}{\left(a-b+c\right)^2}=\frac{\left(a-b+c\right)\left(a-b-c\right)}{\left(a-b+c\right)^2}=\frac{a-b-c}{a-b+c}\)
b)\(M\)\(=\frac{\left(a+2\right)\left(a-1\right)^2}{\left(2a-3\right)\left(a-1\right)^2}=\frac{a+2}{2a-3}\)
1)Rút gọn các phân thức sau
a)N = \(\frac{a^4-5a^2+4}{a^4-a^2+4a-4}\)
b)M = \(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c)P= \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)
\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)
\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)
\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)
\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)
\(=\left(a^2-a+2\right)\left(a+2\right)\)
\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)
Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right)\div\frac{1}{6-4a}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên
c) Tìm a để P<0
d) Tìm P biết \(2a^2-a-3=0\)
1) Rút gọn :
\(B=\frac{\left(a+2b\right)^3-\left(a-2b\right)^3}{\left(2a+b\right)^3-\left(2a-b\right)^3}:\frac{3a^4+7a^2b^2+3b^4}{4a^4+7a^2b^2+3b^4}\)
Rút gọn phân thức
a)) \(\frac{a+b}{a^3+b^3}\)
b)) \(\frac{4a^2+2a+1}{8a^3-1}\)
c)) \(\frac{2ab-b}{8a^3-1}\)
Rút gọn các biểu thức sau
b) 7a.(3a-5)+(2a-3)(4a+1)-(6a-2)2
\(7a\left(3a-5\right)+\left(2a-3\right)\left(4a+1\right)-\left(6a-2\right)^2\)
\(=21a^2-35a+8a^2+2a-12a-3-36a^2+24a-4\)
\(=-7a^2+4a-7\)
Rút gọn các phân thức sau
a) N = \(\frac{a^4-5a^2+a}{a^4-a^2+4a-4}\)
b) M =\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c) P = \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
Cho biểu thức P = \(\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)
a) Rút gọn biểu thức P
b) Tìm các giá trị nguyên của a để P nhận giá trị nguyên
c) Tìm a để P<0
d) Tìm P biết \(2a^2-a-3=0\)
ĐKXĐ: \(a\ne\frac{3}{2},a\ne-\frac{3}{2}\)
a, \(P=\left(\frac{a-1}{2a-3}-\frac{3a}{4a+6}+\frac{7a-2a^2-1}{18-8a^2}\right):\frac{1}{6-4a}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}+\frac{7a-2a^2-1}{2\left(9-4a^2\right)}\right):\frac{-1}{4a-6}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(4a^2-9\right)}\right):\frac{-1}{2\left(2a-3\right)}\)
\(=\left(\frac{a-1}{2a-3}-\frac{3a}{2\left(2x+3\right)}-\frac{7a-2a^2-1}{2\left(2a-3\right)\left(2a+3\right)}\right)\left[-2\left(2a-3\right)\right]\)
\(=\left[\frac{2\left(a-1\right)\left(2a+3\right)-3a\left(2a-3\right)-\left(7a-2a^2-1\right)}{2\left(2a-3\right)\left(2a+3\right)}\right]\left[-2\left(2a-3\right)\right]\)
\(=\frac{4a-5}{2\left(2a-3\right)\left(2a+3\right)}\left[-2\left(2a-3\right)\right]\)
\(=-\frac{\left(4a-5\right)}{2a+3}=\frac{5-4a}{2a+3}\)