Tử = \(a^3-3a+2=a^3-1-3a+3\)
\(=\left(a-1\right)\left(a^2+a+1\right)-3\left(a-1\right)\)
\(=\left(a-1\right)\left(a^2+a-2\right)\)
\(=\left(a-1\right)\left(a-1\right)\left(a+2\right)=\left(a-1\right)^2\left(a+2\right)\)
Mẫu =\(2a^3-7a^2+8a-3=2a\left(a^2-2a+1\right)-3\left(a^2-2a+1\right)\)
\(=\left(a-1\right)^2\left(2a-3\right)\)
=>\(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}=\frac{\left(a-1\right)^2\left(a+2\right)}{\left(a-1\right)^2\left(2a-3\right)}=\frac{a+2}{2a-3}\)
Nhớ h cho mik nhé