giải phương trình
a) \(\dfrac{x+1}{2015}+\dfrac{x+2}{2014}=\dfrac{x+3}{2013}+\dfrac{x+4}{2012}\)
b) \(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
giải chi tiết giúp e ạ;-;
a: \(\Leftrightarrow x+2016=0\)
hay x=-2016
b: \(\Leftrightarrow x-100=0\)
hay x=100
giúp mình với ạ
Bài 1: giải các PT:
a, \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
b, \(\dfrac{x+2}{98}+\dfrac{x+4}{96}=\dfrac{x+6}{94}+\dfrac{x+8}{92}\)
c, \(\dfrac{x-12}{77}+\dfrac{x-11}{78}=\dfrac{x-74}{15}+\dfrac{x-73}{16}\)
d, \(\dfrac{x+\dfrac{2\left(3-x\right)}{5}}{14}-\dfrac{5x-4\left(x-1\right)}{24}=\dfrac{7x+2+\dfrac{9-3x}{5}}{12}+\dfrac{2}{3}\)
\(e,\dfrac{x-\dfrac{3}{2014}+\dfrac{x-2}{2015}=\dfrac{x-2015}{2}+\dfrac{x-2014}{3}}{ }\)
a.
\(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{x+1}{2}+\dfrac{x+3}{4}=3-\dfrac{x+2}{3}\)
\(\Leftrightarrow\dfrac{\left(x+1\right).6}{12}+\dfrac{\left(x+3\right).3}{12}=\dfrac{36}{12}-\dfrac{\left(x+2\right).4}{12}\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=28-4x\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
a) \(\dfrac{1}{2}\left(x+1\right)+\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{3}\left(x+2\right)\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+3\left(x+3\right)}{12}=\dfrac{36-4\left(x+2\right)}{12}\)
\(\Leftrightarrow6\left(x+1\right)+3\left(x+3\right)=36-4\left(x+2\right)\)
\(\Leftrightarrow6x+6+3x+9=36-4x-8\)
\(\Leftrightarrow9x+15=-4x+28\)
\(\Leftrightarrow9x+4x=28-15\)
\(\Leftrightarrow13x=13\)
\(\Leftrightarrow x=1\)
Vậy ................................
haizzz bệnh lười lại lên cơn r
Giải PT sau:
\(\dfrac{x+19}{3}+\dfrac{x+13}{5}=\dfrac{x+7}{7}+\dfrac{x+1}{9}\)
Giải chi tiết giúp mình nheee :>
`(x+19)/3 +(x+13)/5 = (x+7)/7 + (x+1)/9`
`<=> x/3 + 19/3 +x/5 +13/5 = x/7 +1 +x/9 +1/9`
`<=> x/3 +x/5 -x/7 -x/9 = 1+1/9 -19/3 -13/5`
`<=> x (1/3 +1/5 -1/7 -1/9) = -118/45`
`<=> x * 88/315 = -352/45`
`<=> x = -28`
Vậy `S={-28}`
I, Tìm x: a, \(\dfrac{x-2004}{2003}+\dfrac{x-2003}{2005}+\dfrac{x-2005}{2004}=3+\dfrac{2005}{2004}+\dfrac{2004}{2005}\)
\(\dfrac{x+2}{2014}\)+\(\dfrac{x+1}{2015}\)=\(\dfrac{x+2001}{15}\)+\(\dfrac{2014}{12}\)
Giúp mình với, mình cảm ơn nhiều ạ
Sửa đề: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)
Ta có: \(\dfrac{x+2}{2014}+\dfrac{x+1}{2015}=\dfrac{x+2001}{15}+\dfrac{x+2014}{2}\)
\(\Leftrightarrow\dfrac{x+2}{2014}+1+\dfrac{x+1}{2015}+1=\dfrac{x+2001}{15}+1+\dfrac{x+2014}{2}+1\)
\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}=\dfrac{x+2016}{15}+\dfrac{x+2016}{2}\)
\(\Leftrightarrow\dfrac{x+2016}{2014}+\dfrac{x+2016}{2015}-\dfrac{x+2016}{15}-\dfrac{x+2016}{2}=0\)
\(\Leftrightarrow\left(x+2016\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{15}-\dfrac{1}{2}\ne0\)
nên x+2016=0
hay x=-2016
Vậy: S={-2016}
Tìm x
a)\(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
b)\(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
CẢM ƠN CÁC BẠN NHÌU ^_^
a, \(\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}=\dfrac{x+1}{13}+\dfrac{x+1}{14}\)
\(\Leftrightarrow\dfrac{x+1}{10}+\dfrac{x+1}{11}+\dfrac{x+1}{12}-\dfrac{x+1}{13}-\dfrac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}-\dfrac{1}{13}-\dfrac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b, \(\dfrac{x+4}{2014}+\dfrac{x+3}{2015}=\dfrac{x+2}{2016}+\dfrac{x+1}{2017}\)
\(\Leftrightarrow\left(\dfrac{x+4}{2014}+1\right)+\left(\dfrac{x+3}{2015}+1\right)=\left(\dfrac{x+2}{2016}+1\right)+\left(\dfrac{x+1}{2017}+1\right)\)\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}=\dfrac{x+2018}{2016}+\dfrac{x+2018}{2017}\)
\(\Leftrightarrow\dfrac{x+2018}{2014}+\dfrac{x+2018}{2015}-\dfrac{x+2018}{2016}-\dfrac{x+2018}{2017}=0\)
\(\Leftrightarrow\left(x+2018\right)\left(\dfrac{1}{2014}+\dfrac{1}{2015}-\dfrac{1}{2016}-\dfrac{1}{2017}\right)=0\)
\(\Leftrightarrow xx+2018=0\Leftrightarrow x=-2018\)
Vậy x = -2018
a, \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
b, \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
Cảm ơn khi đã giúp mình
a) Ta có: \(\dfrac{x-2}{15}+\dfrac{x-3}{14}+\dfrac{x-4}{13}+\dfrac{x-5}{12}=4\)
\(\Leftrightarrow\dfrac{x-2}{15}-1+\dfrac{x-3}{14}-1+\dfrac{x-4}{13}-1+\dfrac{x-5}{12}-1=0\)
\(\Leftrightarrow\dfrac{x-17}{15}+\dfrac{x-17}{14}+\dfrac{x-17}{13}+\dfrac{x-17}{12}=0\)
\(\Leftrightarrow\left(x-17\right)\left(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}\right)=0\)
mà \(\dfrac{1}{15}+\dfrac{1}{14}+\dfrac{1}{13}+\dfrac{1}{12}>0\)
nên x-17=0
hay x=17
Vậy: x=17
b) Ta có: \(\dfrac{x+1}{19}+\dfrac{x+2}{18}+\dfrac{x+3}{17}+...+\dfrac{x+18}{2}+18=0\)
\(\Leftrightarrow\dfrac{x+1}{19}+1+\dfrac{x+2}{18}+1+\dfrac{x+3}{17}+1+...+\dfrac{x+18}{2}+1=0\)
\(\Leftrightarrow\dfrac{x+20}{19}+\dfrac{x+20}{18}+\dfrac{x+20}{17}+...+\dfrac{x+20}{2}=0\)
\(\Leftrightarrow\left(x+20\right)\left(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}\right)=0\)
mà \(\dfrac{1}{19}+\dfrac{1}{18}+\dfrac{1}{17}+...+\dfrac{1}{2}>0\)
nên x+20=0
hay x=-20
Vậy: x=-20
giải bất pt;
a)\(\dfrac{x+3}{2011}+\dfrac{x+1}{2013}\ge\dfrac{x+10}{2004}+\dfrac{x+13}{2001}\)
b) (x-5)(x-9)>0
c)\(\dfrac{x-5}{x-8}>2\)
(x-5)(x-9)>0\(\Leftrightarrow\left\{{}\begin{matrix}x-5>0\Leftrightarrow x>5\\x-9>0\Leftrightarrow x>9\end{matrix}\right.\)
Vậy x>9 thì (x-5)(x-9)>0
có
\(\dfrac{x-5}{x-8}>2\\ < =>x-5>2\left(x-8\right)\\ < =>x-5>2x-16\\ < =>-x>-11\\ < =>x< 11\)
vậy nghiệm của bpt là x<11
a/
\(\dfrac{x+3}{2011}+\dfrac{x+1}{2013}\ge\dfrac{x+10}{2004}+\dfrac{x+13}{2001}\)
\(\Leftrightarrow\dfrac{x+2014-2011}{2011}+\dfrac{x+2014-2013}{2013}\ge\dfrac{x+2014-2004}{2004}+\dfrac{x+2014-2001}{2001}\)
\(\Leftrightarrow-1+\dfrac{x+2014}{2011}-1+\dfrac{x+2014}{2013}\ge-1+\dfrac{x+2014}{2004}-1+\dfrac{x+2014}{2001}\)
\(\Leftrightarrow\dfrac{x+2014}{2011}+\dfrac{x+2014}{2013}-2\ge\dfrac{x+2014}{2004}+\dfrac{x+2014}{2001}-2\)
\(\Leftrightarrow\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)
\(\Leftrightarrow\dfrac{1}{2011}+\dfrac{1}{2013}>\dfrac{1}{2004}+\dfrac{1}{2001}\) hoặc \(\left(x+2014\right)\left(\dfrac{1}{2011}+\dfrac{1}{2013}\right)\ge\left(x+2014\right)\left(\dfrac{1}{2004}+\dfrac{1}{2001}\right)\)
(với mọi x>0) \(\Leftrightarrow x=2014\)
\(\dfrac{-19}{23}\) x \(\dfrac{13}{14}\) + \(\dfrac{13}{14}\)\(\) x \(\dfrac{-15}{23}\) - \(\dfrac{13}{14}\) x \(\dfrac{1}{23}\)
Mngười giải giúp em chi tiết nha! Tks
\(\dfrac{-19}{23}\cdot\dfrac{13}{14}+\dfrac{13}{14}\cdot\dfrac{-15}{23}-\dfrac{13}{14}\cdot\dfrac{1}{23}\\ =\dfrac{13}{14}\cdot\left(\dfrac{-19}{23}+\dfrac{-15}{23}-\dfrac{1}{23}\right)\\ =\dfrac{13}{14}\cdot\dfrac{-35}{23}=\dfrac{-65}{46}\)