Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thu Thủy
Xem chi tiết
Rau
20 tháng 6 2017 lúc 14:00

Kẹp 1<S<2 ^^ 

Lương Tuấn Dũng
Xem chi tiết
Minh Triều
8 tháng 7 2016 lúc 9:00

bạn có biết BĐT này chưa ? \(\frac{a}{b}< \frac{a+n}{b+n}\)

Minh Hiền
8 tháng 7 2016 lúc 9:00

Ta có:

a/(a+b) > a/(a+b+c); b/(b+c) > b/(a+b+c); c/(c+a) > c/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a) > a/(a+b+c) + b/(a+b+c) + c/(a+b+c) = (a+b+c)/(a+b+c) = 1

=> S > 1 (1)

Mà:

a/(a+b) < (a+b)/(a+b+c); b/(b+c) < (b+c)/(a+b+c); c/(c+a) < (c+a)/(a+b+c)

=> a/(a+b) + b/(b+c) + c/(c+a) < (a+b)/(a+b+c) + (b+c)/(a+b+c) + (c+a)/(a+b+c) = 2(a+b+c)/(a+b+c) = 2

=> S < 2 (2)

Từ (1) và (2) => 1 < S < 2

=> S không có g.trị nguyên.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 5 2017 lúc 9:49

Chọn đáp án A.

Lê Thế Tài
Xem chi tiết
Chibi
5 tháng 4 2017 lúc 16:17

A = \(\frac{2016-b-c}{2016}\)- c +\(\frac{2016-a-c}{2016}\)- a + \(\frac{2016-a-b}{2016}\) - b

= 3 - \(\frac{2\left(a+b+c\right)}{2016}\)- (a + b + c)

= 3 - 2 - 2016 = -2015

Nó là số nguyên mà bạn.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2017 lúc 18:05

Trần Khởi My
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:53

\(A=\dfrac{a}{a+b+c-c}+\dfrac{b}{a+b+c-a}+\dfrac{c}{a+b+c-b}\\ A=\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+a}\\ \Rightarrow A>\dfrac{a}{a+b+c}+\dfrac{b}{a+b+c}+\dfrac{c}{a+b+c}=1\left(1\right)\\ A< \dfrac{a+c}{a+b+c}+\dfrac{b+a}{a+b+c}+\dfrac{c+b}{a+b+c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\left(2\right)\\ \left(1\right)\left(2\right)\Rightarrow1< A< B\\ \Rightarrow A\notin Z\)

lucy
Xem chi tiết
soyeon_Tiểu bàng giải
8 tháng 8 2016 lúc 15:21

Ta có:

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)

                                               \(>\frac{a+b+c}{a+b+c}=1\left(1\right)\)

Áp dụng a/b < 1 => a/b < a+m/b+m (a,b,m thuộc N*)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}\)

                                               \(< \frac{2.\left(a+b+c\right)}{a+b+c}=2\left(2\right)\)

Từ (1) và (2) => \(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)=> \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}\)không là số nguyên dương

Nguyễn Việt Bách
Xem chi tiết
Trần Việt Hùng
8 tháng 1 lúc 21:10

pip install pygame