Cho hàm số y = f(x) có đồ thị như hình vẽ bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f ( x ) + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tính tổng T = a + b.
A. T = 2
B. T = 1
C. T = -1
D. T = -2
Cho hàm số y = f(x) có đồ thị như hình bên. Biết S là tập các giá trị thực của m để hàm số y = 2 f x + m có 5 điểm cực trị. Gọi a, b lần lượt là giá trị nguyên âm lớn nhất và giá trị nguyên dương nhỏ nhất của tập S. Tổng T=a+b là
A. 2
B. 1
C. -1
D. 3
Cho hàm số f(x)=(2 x +m)/(√x+1) với m là tham số thực, m>1. Gọi S là tập tất cả các giá trị nguyên dương của m để hàm số có giá trị lớn nhất trên đoạn [0;4] nhỏ hơn 3. Số phần tử của tập S là
A. 1
B. 3
C. 0
D. 2
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số f x = 1 2 x − x + 1 trên đoạn 0 ; 3 . Tính tổng S = 2 m + 3 M
A. S = − 7 2
B. S = − 3 2
C. S = − 3
D. S = 4
Xét các hàm số f x = a x 2 − b a x + 3 và g x = x 2 − 4 x + 6 trên đoạn [1;5]. Biết trên đoạn [1;5] thì giá trị lớn nhất của f(x) bằng giá trị nhỏ nhất của g(x) và đạt tại cùng một điểm . Tính S là tổng các giá trị a, b thoả mãn yêu cầu bài toán .
A. S = 0
B. S = -1
C. S = 1 2
D. không tồn tại S
Cho hàm số y=f(x), xÎ[-2;3] có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn Î[-2;3]. Giá trị của S=M+m là
A. 6
B. 1
C. 5
D. 3
Cho các số thực a, b, c, d thỏa mãn 0 < a < b < c < d và hàm số y = f(x). Biết hàm số y = f'(x) có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và nhỏ nhất của hàm số y = f(x) trên [ 0 ; d ] . Khẳng định nào sau đây là khẳng định đúng?
A. M + m = f(b) + f(a)
B. M + m = f(d) + f(c)
C. M + m = f(0) + f(c)
D. M + m = f(0) + f(a)
Cho a, b, c là các số thực dương khác 1 thỏa log a 2 b + log b 2 c = log a c b - 2 log b c b - 3
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = log a b - log b c Giá trị của biểu thức S = 2 m + 3 M bằng
A. S = 1 3
B. S = 2 3
C. S = 2
D. S = 3
Cho ∫ 1 2 ln x ( x + 1 ) 2 d x = a b l n 2 - l n c với a,b,c là các số nguyên dương và a/b là phân số tối giản. Tính giá trị của biểu thức S = a + b c
A. S = 4 3
B. S = 8 3
C. S = 6 5
D. S = 10 3