Cho tam giác ABC cân tại A, BC:x+2y-17=0, đường cao CK: 4x+3y-28=0. Đường cao BH đi qua M(1;6). Tìm tọa độ A và diện tích tam giác ABC
Trong mặt phẳng với hệ toạ đọ Oxy, cho tan giác ABC cân tại A, cạnh BC thuộc đường thẳng : 2x + y - 2 = 0. Đường cao BH: x + y + 1 = 0, điểm M(1;1) thuộc đường cao CK. Xác định toạ độ các đỉnh tam giác ABC.
cho tam giác ABC có phương trình cạnh AB :5x-3y+2=0 ,các đường cao qua đỉnh A và B lần lượt là (d1):4x-3y+1=0 ;(d2):7x+2y-22=0 .Lập phương trình 2 cạnh AB và AC và đường cao thứ 3
A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)
Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)
Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là \(\vec{n}\) (5; -3)
=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\)
B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)
=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)
A = AB giao d1=> Tọa độ A là nghiệm của hệ : {5x−3y+2=04x−3y+1=0{5x−3y+2=04x−3y+1=0<=> {x+1=04x−3y+1=0{x+1=04x−3y+1=0<=> {x=−1y=1+4x3{x=−1y=1+4x3<=> {x=−1y=−1{x=−1y=−1=> A (-1; -1)
Đường thẳng d2 có vtpt là →n2(7;2)n2→(7;2) chính là vtcp của đường thẳng AC , điểm A thuộc AC
=> Phương trình đường thẳng AC có dạng: {x=−1+7ty=−1+2t{x=−1+7ty=−1+2t(t ∈∈ R)
Gọi H = d1 ∩∩ d2 => tọa độ H là nghiệm của pt: {7x+2y−22=04x−3y+1=0{7x+2y−22=04x−3y+1=0 <=> {x=6429y=9529{x=6429y=9529=> H (6429;95296429;9529)
Đường cao CH đi qua H và có vtcp chính là vtpt của AB là →nn→ (5; -3)
=> Phương trình CH có dạng : {x=6429+5ty=9529−3t{x=6429+5ty=9529−3t
B = AB ∩∩ d2 => Tọa độ B là nghiệm của hệ : {5x−3y+2=07x+2y−22=0{5x−3y+2=07x+2y−22=0 <=> {x=2y=4{x=2y=4=> B (2;4)
Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là →n1n1→(4;-3)
=> phương trình đường thẳng BC là: {x=2+4ty=4−3t
Đường thẳng d2 là phương trình của đường nào bạn?
Bài 8. Cho tam giác ABC, biết phương trình ba cạnh của tam giác. Viết phương trình các đường cao của tam giác, với:
a)\(AB:2x-3y-1=0,BC:x+3y+7=0,CA:5x-2y+1=0\)
b)\(AB:2x+y+2=0,BC:4x+5y-8=0,AC:4x-y-8=0\)
Mình làm 1 ý câu a, các ý khác hoàn toàn giống hệt:
Do A là giao điểm của AB và AC nên tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}2x-3y-1=0\\5x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{5}{11};-\frac{7}{11}\right)\)
Gọi AH là đường cao hạ từ A xuống BC, đường thẳng BC nhận \(\left(1;3\right)\) là 1 vtpt, do \(AH\perp BC\Rightarrow\) AH nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AH:
\(3\left(x+\frac{5}{11}\right)-1\left(y+\frac{7}{11}\right)=0\Leftrightarrow3x-y+\frac{8}{11}=0\)
trong mặt phẳng Oxy cho tam giác ABC cân tại A có phương trình cạnh BC: x-2=0, phương trình cạnh AC: 2x+3y-1=0; và đường thẳng AB đi qua điểm I(-7;-3). Hãy viết phương trình đường cao kẻ từ đỉnh C của tam giác ABC
ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)
Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)
Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC
khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)
Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)
1. Cho tam giác ABC cân tại A. Đường cao BH và CK cắt nhau ở M
a) CM: BH=CK
b) tam giác BMC cân
c) KH//BC
d) Trên tia đối của tia CA lấy N sao cho: CH=CN. Cm: BC đi qua trung điểm của KN
e) Qua B kẻ đường thẳng vuông góc với BC cắt CK ở I. Cm: góc IBK= góc HAM
Bài 1 em chỉ k biết làm câu d và e
2. Cho tam giác ABC. Trên tia BA lấy điểm E, trên tia CA lấy điểm F sao cho BE+CF=CF. Cm: đường trung trực của đoạn EF luôn đi qua một điểm cố định.
3. Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy M,N sao cho AM+AN=AB. Gọi K là trung điểm của mN. Cm: K thuộc 1 đường thẳng cố định
cho tam giác abc vuông tại a đường cao ah. d là trung điểm ab, e là trung điểm ah, f là giao của đường trung trực của ab với ce.f(-1;3) pt bc:x-2y+1=0. biết d thuộc đt 3x+5y+0 và hoành độ nguyên tìm a,b,c