Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hạ Băng Băng
Xem chi tiết
Thọ Nguyễn
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Dương Quốc Huy
Xem chi tiết
Loan
12 tháng 7 2015 lúc 23:59

A B C d2 d1 H

A = AB giao d1=> Tọa độ A là nghiệm của hệ : \(\begin{cases}5x-3y+2=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x+1=0\\4x-3y+1=0\end{cases}\)<=> \(\begin{cases}x=-1\\y=\frac{1+4x}{3}\end{cases}\)<=> \(\begin{cases}x=-1\\y=-1\end{cases}\)=> A (-1; -1)

Đường thẳng d2 có vtpt là \(\vec{n_2}\left(7;2\right)\) chính là vtcp của đường thẳng AC , điểm A thuộc AC

=> Phương trình đường thẳng AC có dạng: \(\begin{cases}x=-1+7t\\y=-1+2t\end{cases}\)(t \(\in\) R)

Gọi H = d1 \(\cap\) d2 => tọa độ H là nghiệm của pt: \(\begin{cases}7x+2y-22=0\\4x-3y+1=0\end{cases}\) <=> \(\begin{cases}x=\frac{64}{29}\\y=\frac{95}{29}\end{cases}\)=> H (\(\frac{64}{29};\frac{95}{29}\))

Đường cao CH  đi qua H và có vtcp chính là vtpt của  AB  là \(\vec{n}\) (5; -3) 

=> Phương trình CH có dạng : \(\begin{cases}x=\frac{64}{29}+5t\\y=\frac{95}{29}-3t\end{cases}\) 

B = AB \(\cap\) d2 => Tọa độ B là nghiệm của hệ :  \(\begin{cases}5x-3y+2=0\\7x+2y-22=0\end{cases}\) <=> \(\begin{cases}x=2\\y=4\end{cases}\)=> B (2;4)

Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là \(\vec{n_1}\)(4;-3)

=> phương trình đường thẳng BC là: \(\begin{cases}x=2+4t\\y=4-3t\end{cases}\)

Nguyễn Hữu Dương
23 tháng 1 2018 lúc 9:47

chỉ bài này mk với

Nguyễn Văn Việt
12 tháng 1 2019 lúc 23:31

A = AB giao d1=> Tọa độ A là nghiệm của hệ : {5x−3y+2=04x−3y+1=0{5x−3y+2=04x−3y+1=0<=> {x+1=04x−3y+1=0{x+1=04x−3y+1=0<=> {x=−1y=1+4x3{x=−1y=1+4x3<=> {x=−1y=−1{x=−1y=−1=> A (-1; -1)

Đường thẳng d2 có vtpt là →n2(7;2)n2→(7;2) chính là vtcp của đường thẳng AC , điểm A thuộc AC

=> Phương trình đường thẳng AC có dạng: {x=−1+7ty=−1+2t{x=−1+7ty=−1+2t(t ∈∈ R)

Gọi H = d1 ∩∩ d2 => tọa độ H là nghiệm của pt: {7x+2y−22=04x−3y+1=0{7x+2y−22=04x−3y+1=0 <=> {x=6429y=9529{x=6429y=9529=> H (6429;95296429;9529)

Đường cao CH đi qua H và có vtcp chính là vtpt của AB là →nn→ (5; -3)

=> Phương trình CH có dạng : {x=6429+5ty=9529−3t{x=6429+5ty=9529−3t

B = AB ∩∩ d2 => Tọa độ B là nghiệm của hệ : {5x−3y+2=07x+2y−22=0{5x−3y+2=07x+2y−22=0 <=> {x=2y=4{x=2y=4=> B (2;4)

Đường thẳng BC đi qua B , có vtcp chính là vtpt của d1 là →n1n1→(4;-3)

=> phương trình đường thẳng BC là: {x=2+4ty=4−3t

Hạ Băng Băng
Xem chi tiết
Nguyễn Việt Lâm
4 tháng 2 2021 lúc 23:22

Đường thẳng d2 là phương trình của đường nào bạn?

Nguyễn Ngọc Bảo Trang
Xem chi tiết
Nguyễn Việt Lâm
19 tháng 4 2020 lúc 22:18

Mình làm 1 ý câu a, các ý khác hoàn toàn giống hệt:

Do A là giao điểm của AB và AC nên tọa độ A là nghiệm:

\(\left\{{}\begin{matrix}2x-3y-1=0\\5x-2y+1=0\end{matrix}\right.\) \(\Rightarrow A\left(-\frac{5}{11};-\frac{7}{11}\right)\)

Gọi AH là đường cao hạ từ A xuống BC, đường thẳng BC nhận \(\left(1;3\right)\) là 1 vtpt, do \(AH\perp BC\Rightarrow\) AH nhận \(\left(3;-1\right)\) là 1 vtpt

Phương trình AH:

\(3\left(x+\frac{5}{11}\right)-1\left(y+\frac{7}{11}\right)=0\Leftrightarrow3x-y+\frac{8}{11}=0\)

DTK CAO THU
Xem chi tiết
Nguyễn Minh Quang
31 tháng 3 2022 lúc 10:43

ta có tọa độ B là nghiệm của hệ \(\hept{\begin{cases}x-2=0\\2x+3y=1\end{cases}\Leftrightarrow B\left(2;-1\right)}\)

Từ I kẻ d' qua I và song song với BC khi đó \(d':x=-7\)

Khi đó d' cắt AC tại điểm K có tọa độ là \(\hept{\begin{cases}x=-7\\2x+3y=1\end{cases}\Leftrightarrow}K\left(-7;5\right)\), gọi H là trung điểm của BC

khi đó điểm A thuộc trung trực của KI là đường thẳng AH: \(y=1\)Do đó tọa độ A là : \(A\left(-1;1\right)\)

Do đó đường cao từ C có VTPT \(IA=\left(6,4\right)\)nên đường cao từ C là : \(3x+2y-4=0\)

Khách vãng lai đã xóa
Nguyễn Bùi Khánh Linh
Xem chi tiết
Thương Huyền
Xem chi tiết